

NEHRU ARTS AND SCIENCE COLLEGE

(Autonomous)

Reaccredited by NAAC with 'A' Grade, Certified by ISO 9001:2008 &14001:2004 Recognized by UGC & Affiliated to Bharathiar University Nehru Gardens, Coimbatore-641 105

Scheme of Examination

M. Sc. Biotechnology

(Applicable to the students admitted during the Academic Year 2020-2021 onwards)

nester	se Code	Name of the Course	Hrs / eek	tion of ination	Exam			edits
Sen	Cours		Ins. W	Dura Exam	CIA	ESE	Total	Cr
	18PGBTC101	Paper – I Molecular Biology and Genetics	4	3	25	75	100	4
	18PGBTC102	Paper – II Biochemistry	4	3	25	75	100	4
	18PGBTC103	Paper – III Microbiology	4	3	25	75	100	4
	18PGBTC104	Paper – IV Bioinstrumentation & Biostatistics	4	3	25	75	100	4
Ι	18PGBTQ201	Practical – I Biochemistry and Industrial Biotechnology	-	-	-	-		
	20PGBTQ202	Practical – II Microbiology and rDNA Technology	-	-	-	-	-	
	18PGBTE101/1 02/103	Discipline Specific Elective Paper – I	4	3	25	75	100	4
			30				500	20
	20PGBTC205	Paper – V Plant Biotechnology	4	3	25	75	100	4
	20PGBTC206	Paper – VI Genetic Engineering	4	3	25	75	100	4
	18PGBTC207	Paper – VII Industrial Biotechnology	4	3	25	75	100	4
	18PGBTC208	Paper – VIII Bioethics, Biosafety & IPR	4	3	25	75	100	4
п	18PGBTQ201	Practical – I Biochemistry and Industrial Biotechnology	6	40	60	100	4	
11	20PGBTQ202	Practical – II Microbiology and rDNA Technology	6	40	60	100	4	
	18PGBTE201 / 202 / 203	Elective Paper – II	4	3	25	75	100	4
	20PGBTONLC	Online Course	-	-	-	-	-	-
		30				700	28	
	19PGBTC309	Paper – IX Immunology and Immunotechnology	4	3	25	75	100	4
	19PGBTC310	Paper – X Animal Biotechnology	4	3	25	75	100	4
III	19PGBTC311	Paper – XI Pharmaceutical Biotechnology	4	3	25	75	100	4
	18PGBTC312	Paper – XII Bioinformatics and System Biology	4	3	25	75	100	4
	I9PGBTQ403	Practical III – Plant and Animal Biotechnology	5	-	-	-	-	-
	I9PGBTQ404	Practical IV – Immunology and Pharmaceutical Biotechnology	5	-	-	_	-	-

	19PGBTE301 /			_				
	302 / 18PGBTE	Elective Paper – III	4	3	25	75	100	4
	303							
	19PGBTT301	*Internship Training	-	-	Exte	ernal	50	2
	20PGBTONLC	Online Course	-	-	-	-	-	-
			30				550	22
	19PGBTV401	**Research Project and Viva-Voce	16	I	80	120	200	8
	19PGBTE401 /							
	18PGBTE 402 /	Elective Paper – IV	4	3	25	75	100	4
IV/	18PGBTE403							
1 V	I9PGBTQ403	Practical III – Plant and Animal Biotechnology	5	6	40	60	100	4
		Practical IV – Immunology and Pharmaceutical	5	6	40	60	100	4
	19POD I Q404	Biotechnology	5	0	40	00	100	4
			30				500	20
	TOTAL							90
	Advanced Learner	rs Courses for Additional Credits	20	2 Credits / Paper -				8

^{\$}Not included in CGPA calculation

* Internship Training:

Industrial Training has to be undergone during II semester vacation period (15 days). Mark shall be given based on training report and presentation

** Research Project and Viva-Voce:

1) Project is pertain to the field of Biotechnology

2) Three review meetings should be conducted in the presence of HoD and respective guide.

Project	Maximum Marks
Review I (Last week of December)	20
Review II (Last week of January)	20
Review III (Last week of February)	20
Document preparation and	20
Implementation (First week of March)	20

Dissertation evaluation	80 Marks
Viva-Voce	40 Marks

List of Discipline Specific Elective Papers

Elective	Course Code	Group	Name of the Course
	18PGBTE101	Α	Environmental Biotechnology
Elective – I	18PGBTE102	В	Bioentrepreneurship
	18PGBTE103	С	Research Methodology
	18PGBTE201	A	Agricultural Biotechnology
Elective – II	18PGBTE202	В	Down Stream Processing
	18PGBTE203	С	Applied Biostatistics
	19PGBTE301	Α	Food Biotechnology
Elective – III	19PGBTE302	В	Quality Control and Assurance
	18PGBTE303	C	Bioinformatics and Molecular Biology Databases
	19PGBTE401	Α	Clinical Pathology and Diagnosis
Elective – IV	18PGBTE402	В	Occupational Health and Industrial Safety
	18PGBTE403	C	Drug Designing and Molecular Modeling

S. No.	Course Code	Name of the Course
1.	18PGBTSS01	Cell Communication and Cell Signaling
2.	18PGBTSS02	Diversity of Life Forms
3.	18PGBTSS03	Ecological Principles
4.	18PGBTSS04	Applied Biology
5.	18PGBTSS05	Histochemical and Immunological Techniques

List of Advanced Learners Course [Self study]

Chairman Board of Studies in Biotechnology Nehru Arts and Science College Coimbatore

Programme Outcomes

PO1 Science Knowledge: Apply the knowledge of science, biological fundamentals, and a biotechnological specialization to the solution of complex biological problems

PO2 Ethics: Apply reasoning informed by the appropriate knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the biotechnology practice

PO3 Effective Citizenship: Understand the impact of the bioscience solutions in societal and environmental contexts, and demonstrate the knowledge, and need for sustainable development

PO4 Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Programme Specific Outcomes

PSO1 Demonstrate the ability to design, conduct experiments and analyze data in the field of Biotechnology

PSO2 Ability to apply Biotechnology tools in biological research

PSO3 To make them independently carry out research & development work to solve practical problem

PSO4 To have successful career as professional or a researcher through lifelong learning in the field of biotechnology

PSO5 To make them capable in decision making at personal and professional level

Course Code	ſ	Title	
21PGBTC101	Paper – I Mo	olecular Biology	
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks

Course Objective:

To provide knowledge of molecular biology and genetics of prokaryotic and eukaryotic organisms to the students.

Course Outcomes:

On successful completion of the course, the student will be able to

CO1	Tell about basic genetics concept the structure of genes and chromosomes
CO2	Explain the changes in genes and its phenotypic effects
CO3	Illustrate the process of replication and gene expression
CO4	Examine the process of recombination and mutation and infer its outcome
CO5	Distinguish the different models of recombination

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	Gene Structure: Fine structure of gene, split genes, pseudogenes, overlapping genes and multigene families. DNA and RNA as genetic material; Chemistry and structure of DNA.	1	1
	Chromosome: Structure, organization, banding, karyotyping, and labeling. Special types of chromosome - sex chromosomes, B-chromosome, polytene and lambrush chromosomes	1	1
	Instructional Hours		12
II	Genes for Development: Genes for development in Drosophila and Arabidopsis, Fertilization and Development; genetic control of X inactivation; in vitro fertilization and embryo transfer. Numerical and structural changes in the chromosome,	3	8
	Epigenetics: Gene expression without a change in DNA sequence changes in gene expression arising from chemical modification of DNA or histone proteins.	4	3
	Instructional Hours		12
ш	DNA replication in prokaryotes and eukaryotes: mechanism of replication, Meselson and Stahl experiment; Transcription – steps, eukaryotic promoters, enhancers, transcription factors, post transcriptional modifications.	2	4
	Translation: Prokaryotes and eukaryotes translation and their regulation, post translational modifications,	2	4

	Regulation of gene expression in prokaryotes and eukaryotes.							
	Instructional Hours	12						
	Gene Mutation and its mechanism: Types of mutation:							
IV	 Forward; Reverse; Intragenic suppressor; Extragenic suppressor; point mutations; Missense; Nonsense; Somatic 4 versus germinal mutation. Mutagenesis- spontaneous and induced. DNA repair mechanisms: Direct reversal; Excision repair (base excision, nucleotide excision and mismatch); 4 	8 15						
recombinational repair; SOS response and SOS bypass.								
	Instructional Hours	12						
V	Recombination: Models; Rec A, Rec BCD, Ruv ABC, and molecular mechanism of Recombination.	18						
	Conjugation; transformation and transduction. Transposons - simple and complex in prokaryotic and 3 eukaryotic systems.	9						
	Instructional Hours	12						
	Total Hours	60						

- 1. Benjamin Lewin, **Genes VI**, Published by Oxford University Press, U.K., 6th Edition, 1997.
- 2. Darnell, Lodish, Baltimore, **Molecular Cell Biology**, Published by Scientific American Books, Inc., 1994.
- 3. Benjamin A Pierce, **Genetics: A Conceptual Approach** by Published by Freeman and Company, New York, 2nd Edition, 2005.
- 4. William S. Klug & Michael R. Cummings, **Essentials of Genetics**, Prentice Hall Internationals, 2nd Edition, 1996.
 - Unit I : Text Book 1, Chapter 1: 2-26, 98-189
 - Unit II : Text Book 3 & 4, Chapter 8 & 9: 240-272; Chapter 3: 53-73
 - Unit III: Text Book 2, Chapter 4: 259-309
 - Unit IV: Text Book 4, Chapter 8 & 15: 120-147
 - Unit V : Text Book 3 & 4, Chapter 18: 216-227; Chapter 9: 149-163

Reference Book(s):

- 1. Brown, T. A., Genomes 2, Published by Garland Science Publishing, New York. 2002.
- 2. Gerald Karp, Cell and Molecular Biology, Published by John Wiley, 6th Edition, 2009.
- 3. Bruce Alberts, **Molecular Biology of the Cell**, Published by Garland Science, Taylor & Francies, 2014.
- 4. https://pdfs.semanticscholar.org/a610/f4e5b9797218bd6ecbfd597787129deaf78f.pdf
- 5. <u>https://www.youtube.com/watch?v=aWpAe3rc5BU</u>

CIA I	CIA II	CIA III	Seminar	Model	Viva voce	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	Μ	L	L	L	Н	Μ	L	L	Μ
CO2	Μ	L	L	Μ	Μ	L	L	L	L	М	М	L	М
CO3	L	Η	Μ	Μ	L	Μ	L	М	Н	Н	Н	М	М
CO4	L	L	L	Μ	L	Н	Μ	L	L	Н	Н	М	L
CO5	Μ	Μ	L	L	Μ	L	L	М	Н	L	Н	М	М

Verified by HOD	Checked by	Approved by
	Verified by HOD	Verified by HOD Checked by

Course Code		Title			
21PGBTC102	Paper – II Biochemistry				
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks		

Course Objective:

To understand the structure of atoms, molecules and chemical bonds, enzyme kinetics, biochemical concepts and techniques which will be necessary for future scientific endeavors.

Course Outcomes:

On the successful completion of the course the students will be able to

CO 1	Known phenomena, laws, rules, definitions and physical quantities related to biochemistry
CO 2	Have the knowledge of the biochemical bases of human motoricity
CO 3	Integrate the various aspects of metabolism and their regulatory pathways
CO 4	Have the ability to biochemical analysis of the basic forms human movement
CO 5	Find information related to the issues of biochemistry

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
	Structure of: Atoms, molecules and chemical bonds	1	1
	Classes of organic compounds and functional groups	1	1
	Covalent and Noncovalent interactions - Van der Waals,		
	Electrostatic, Hydrogen bonding and hydrophobic	1	1
I	interactions		
	Respiration and photosynthesis. Energy metabolism	1	13,14
	(concept of free energy)	1	11.10
	Principles of thermodynamics	l	11,13
	Kinetics, dissociation and association constants	1	5
	Instructional Hours		12
	Carbohydartes - classification	1,2	1,13
TI	Glycolysis	2	17
	TCA cycle	2	16
	Glycogen breakdown and synthesis	2	18
	Gluconeogenesis	2	19
11	interconversion of hexoses and pentoses	2	20
	Co-ordinated control of metabolism	2	20
	Oxidation of fatty acids	2	22
	Biosynthesis of fatty acids: Triglycerides; Phospholipids;	2	21
	Sterols	Z	21
	Instructional Hours		12
	Amino acids and peptides - classification	2	3
III	Peptide bond, protein synthesis.	2	3
	Classifications and functions of proteins.	2	3

	Structural organization of protein (primary, secondary, tertiary, quaternary and domain structure)	1,2	4,5	
	Ramchandran map	1,2	4,5	
	Purification and criteria of homogeneity	1,2	3,4	
	Instructional Ho	ours	12	
	Nucleic acids: chemical structure.	2	33	
	Structure of double stranded DNA (B, A, C, D, T and Z DNA)	1	8	
	Physical properties of double stranded DNA	1	8	
	Biosynthesis of purines	2	34	
	Biosynthesis of pyrimidines	2	34	
TX7	Types of RNAs and their biological significance	1	8	
1 V	DNA supercoiling	1	24	
	Biochemistry and molecular basis of different disorders related to carbohydrate, protein. fat and nucleic acids	3	5	
	Inborn errors of Protein - Phenyl ketonuria (PK Carbohydrate – Galactosemia, Fat - Medium & very le chain acylCoA dehydrogenase deficiency (MCAD VLCAD)	U), ong 3 & 3	5	
	Instructional He	ours	12	
	Enzymes and coenzymes: Coenzymes interaction activators and inhibitors	ons: 2	7	
	Mechanism of enzyme action: Active sites, Enzyme kinetics : negative and positive cooperativity	1	6	
N7	Kinetics of enzyme inhibitors	1	6	
V	• Factors affecting enzymatic activity			
	isoenzymes, allosteric enzymes;	1,4	2,2	
	Ribozyme: hammer head, hair pin and other ribozymes,	1,4	2,2	
	Abzyme: structure and drug targets (enzymes a receptors).	and 4	8	
	Instructional Hours		12	
		Total Hours	60	

- 1. Albert L. Lehninger, David Lee Nelson, Michael M. Cox, Lehninger principles of biochemistry, Published by W.H. Freeman, 5th Edition, 2008.
- 2. Robert K. Murray, Darryl K. Granner, Peter A. Mayes, Victor W. Rodwell, **Harper's Illustrated Biochemistry**, Published by McGraw-Hill Professional, 29th Edition, 2012.
- 3. Jeremy Mark Berg, John L. Tymoczko, Lubert Stryer, **Biochemistry**, Published by W. H. Freeman, 6th Edition, 2006.
- 4. Donald Voet, Judith G. Voet, **Biochemistry**, Published by J. Wiley & Sons, 4th Edition, 2010.

Unit I : Text Book 1, Chapter 1, 5, 11, 13, 14.

Unit II : Text Book 1, Chapter 1; Text Book 2, Chapter 13, 16, 17, 18, 19, 20, 21, 22.

Unit III: Text Book 1, Chapter 3, 4; Text Book 2, Chapter 3, 4, 5

Unit IV: Text Book 1, Chapter 8, 24; Text Book 2, Chapter 33, 34;

Text Book 3, Chapter 5.

Unit V : Text Book 1, Chapter 2, 6; Text Book 2, Chapter 7; Text Book 4, Chapter 2, 8

Reference Book(s):

- 1. Geoffrey L. Zubay, Published by Wm.C, **Biochemistry**, Brown Publishers, 3rd Edition, 1993.
- 2. Burtis *et. al.*, **Teitz Text book of Clinical Biochemistry**, 3rd edition, William Heinmann Medical Books, Ltd., 1999.
- 3. Trevor Palmer, Enzymes: Biochemistry, Biotechnology and Clinical Chemistry, Published by Horwood Publishing Limited, 5th Edition, 2001.
- 4. Varley *et. al.*, **Practical Clinical Biochemistry**, volume I and II, CBS Publishers, 5th Edition, 1980.
- 5. Mayne, Clinical Chemistry in Diagnosis and Treatment, 6th Edition, ELBS Publications, 1994.
- 6. Mosby and Marshall, **Clinical Chemistry**, 5th Edition, 2004.
- 7. Bishop and Lipppincott, Clinical Chemistry-Principles, Procedures and Correlations, 2000.
- 8. <u>https://archive.org/details/LehningerPrinciples</u> of Biochemistry 7th Edition PDF_201803

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Viva Voce	Model Preparation	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	L	Μ	L	Μ	Н	L	Н	L	М	М	Μ
CO2	Μ	L	Μ	L	L	Н	L	М	Н	L	М	Н	Μ
CO3	L	Μ	L	Μ	L	L	L	L	L	Н	М	L	L
CO4	Μ	L	Μ	L	L	Μ	Н	М	Н	Н	М	М	L
CO5	L	L	Μ	L	Μ	L	L	L	М	L	Н	М	М

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title	
21PGBTC103	Paper – I	II Microbiology	
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks

Course Objective:

Students will understand the basics of microbiology, with an emphasis on microbial growth and control.

Course Outcomes:

Upon successful completion of this course the student will be able to

CO1	Recognize different types of microorganisms at the microscope						
CO2	Understand the basic microbial structure and function and study the comparative characteristics of prokaryotes and eukaryotes and also Understand the structural similarities and differences among various physiological groups of bacteria/archaea						
CO3	Apply appropriate microbiological techniques for purification						
CO4	Differentiate structural and special differentiation in bacteria						
CO5	Know the specific characteristic features of microorganisms						

Offered by: Biotechnology Course Content

Unit	Description	Text Book	Chapter
I	Concepts of Microbiology: Spontaneous generation conflict, Germ theory of diseases, Cell theory, Contributions: Antoni van Leeuwenhoek, Francesco Redi, Louis Pasteur, John Tyndall & Ferdinand Cohn, Robert Koch, Edward Jenner, Elie Metchnikoff, Joseph Lister, Paul Ehrlich, Alexander Fleming and Richard Petri. Purification of Microorganisms. Principle and nutritional requirements for Bacterial growth, Cuture media.	1	1
	Instructional Hours		4
П	 Observing Microorganisms: Microscopy – Introduction, Bright field, Dark Field, Phase contrast and Fluorescent. Preparing and Staining Specimens: Smear, Wet mount; Types of stains – Simple, Differential (Gram's and Acid fast), Special (Endospore and Flagella), Fungal staining. Control of Microorganisms: Physical methods – Heat 	2	3
	Filtration and Radiation; Chemical methods – Phenolics, Alcohols, Halogens and Gases	2	12
	Instructional Hours		16

instructional flours		14
Instructional Hours		12
Classification of Protozoa – Out line, General Characters and importance.	5	19
Algal Taxonomy: Classes, General characteristics and Economic importance	5	18
Fungal Taxonomy : General Properties, Classification (Alexopolus - up to class level) and Economic importance	4	1-13
Instructional Hours		12
Bacterial Taxonomy: Outline Classification and General Characterization of Eubacteria and Archaebacterium	1	20-22
Instructional Hours		16
Nucleus, Cilia and Flagella		
apparatus ribosomes mitochondria Chloroplast		
motility, Pili and Fimbriae; Eukaryotes: Over view,		
and Gram negative), Capsule, Slime layer, Flagella &	3	3
Ribosomes, Nucleiod, Cell wall structure (Gram positive		
(Size, Shape and Arrangements), Plasma membrane,		
Cell structure and Function: Prokaryotes – Over view		
	Cell structure and Function: Prokaryotes – Over view (Size, Shape and Arrangements), Plasma membrane, Internal membrane, Cytoplasmic inclusion bodies, Ribosomes, Nucleiod, Cell wall structure (Gram positive and Gram negative), Capsule, Slime layer, Flagella & motility, Pili and Fimbriae; Eukaryotes: Over view, Cytoplasmic matrix, Endoplasmic reticulum, Golgi apparatus, ribosomes, mitochondria, Chloroplast, Nucleus, Cilia and Flagella Instructional Hours Bacterial Taxonomy: Outline Classification and General Characterization of Eubacteria and Archaebacterium Fungal Taxonomy: General Properties, Classification (Alexopolus - up to class level) and Economic importance Algal Taxonomy: Classes, General characteristics and Economic importance Classification of Protozoa – Out line, General Characters and importance.	Cell structure and Function: Prokaryotes – Over view (Size, Shape and Arrangements), Plasma membrane, Internal membrane, Cytoplasmic inclusion bodies, Ribosomes, Nucleiod, Cell wall structure (Gram positive and Gram negative), Capsule, Slime layer, Flagella & motility, Pili and Fimbriae; Eukaryotes: Over view, Cytoplasmic matrix, Endoplasmic reticulum, Golgi apparatus, ribosomes, mitochondria, Chloroplast, Nucleus, Cilia and Flagella3Instructional HoursBacterial Taxonomy: Outline Classification and General Characterization of Eubacteria and 1 Archaebacterium1Fungal Taxonomy: General Properties, Classification (Alexopolus - up to class level) and Economic importance4Algal Taxonomy: Classes, General characteristics and Economic importance5Classification of Protozoa – Out line, General Characters and importance.5

- 1. Joanne Willey and Linda Sherwood and Christopher J. Woolverton, **Prescott's Microbiology**, McGraw-Hill Publications, 3rd Edition, 2017.
- 2. Jacquelyn G. Black, Laura J. Black, **Microbiology: Principles and Explorations**, Wiley Publication, 9th Edition, 2015.
- 3. Michael T. Madigan, Kelly S. Bender, Daniel H. Buckley, W. Matthew Sattley, David A. Stahl, **Brock Biology of Microorganisms**, 15th Edition, Pearson Publication, 2018.
- 4. Constantine J. Alexopoulos, Charles W. Mims, Meredith M. Blackwell, **Introductory Mycology**, Wiley Publication, 4th Edition, 1996.
- 5. E.C.S. Chan, Michael J. Pelczar, Jr., Noel R. Krieg, **Microbiology**, McGraw-Hill Publications, 5th Edition, 2010.
 - Unit I : Text Book 1, Chapter 1: 1-17.
 - Unit II : Text Book 2, Chapter 3: 52-68 & Chapter 12: 346-357.
 - Unit III: Text Book 3, Chapter 3: 48-78.
 - Unit IV: Text Book 1, Chapter 20- 22: 469-538.
 - Unit V: Text Book 4, Chapter 1-29: 1-775 and 5, Chapter 18 & 19: 364-374

Reference Book(s):

- 1. Kathleen Park Talaro, **Foundation in Microbiology**, McGraw-Hill Publications, 9th Edition, 2015.
- 2. Gerard J. Tortora, Berdell R. Funke, Christine L. Case, **Microbiology: An Introduction**, Pearson Publication, 20th Edition, 2015.
- 3. https://www.edx.org/learn/microbiology
- 4. <u>https://study.com/articles/List_of_Free_Online_Microbiology_Courses_and_Training_Op_tions.html</u>
- 5. https://microbiologysociety.org/education-outreach/resources.html

CIA I	CIA II	CIA III	Seminar	Case study	Viva voce	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	L	Μ	L	Μ	Н	L	М	L	Μ	М	L
CO2	L	Μ	Μ	L	L	Н	L	Μ	L	L	М	М	L
CO3	М	L	L	Н	L	L	L	Μ	Н	Н	М	М	L
CO4	L	L	L	Μ	L	Μ	Н	L	Н	М	М	М	М
CO5	М	L	М	L	Н	L	М	Н	М	Н	L	М	М

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title					
21PGBTC104	Paper – IV Bioinstr	Paper – IV Bioinstrumentation and Biostatistics					
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks				

Course Objective:

On successful completion of the subject, the student should have understood the analytical techniques in the field of Biotechnology

Course Outcomes:

After successful completion of this class, students will be able to:

CO1	Remember specific facts, terms concepts and principles
CO2	Understand the purpose of instrumentation in bioscience
CO3	Apply concepts, calculation and principles of instruments
CO4	Critically review and analyze basic parameters of the equipment related to
	bioscience
CO5	Understand the application of statistical software for biological research

Offered by: Biotechnology Course Content

Unit	Description	Text Book	Chapter
	Buffers and Spectrophotometry : pH, pK, acids, bases and buffers	1	1
Ι	Henderson - Hasselbach equation pH meter, Colorimetry & Spectrophotometry: Principles, types and applications	1	12
	UV-VIS double beam spectrophotometry, Spectroflurometry, Mass spectroscopy, IR spectroscopy, Flame photometry, NMR Spectroscopy, Circular Dichroism, X- ray diffraction	1	12 &13
	Instructional Hours		13
II	Principles, types and applications of chromatography: Paper chromatography, Thin layer chromatography (TLC), Size exclusion, Ion-exchange chromatography, affinity chromatography, High performance liquid chromatography (HPLC), Gas chromatography (GC), Mass spectrometry (MS). MALDI TOF	1	11 9
	Instructional Hours		12
ш	 Principles, types and applications of Centrifuges: Various types of Centrifuges, Separation methods Principles, types and applications of Electrophoresis: Agarose gel electrophoresis PAGE (SDS/Native), Gradient gel, Isoelectric focusing, 2-D gel electrophoresis (2-D PAGE), cellulose, Capillary electrophoresis and Flow Cytometry 	1	3, 10 & 12
	Instructional Hours		12

	Scope of Biostatistics And Measures of Central Tendency :Scope of Biostatistics	2	1
IV	Measures of Central tendency – Arithmetic mean, Median and Mode. Calculation of mean, median, mode in series of individual observation discrete series, continuous open end classes	2	5
	Instructional Hours		11
	Classification, tabulation and Representation of Data: Classification and tabulation of data – Graphical and diagrammatic representations	2	3
	Scale diagrams – Histograms – frequency polygon - Frequency curves	2	4
\mathbf{V}	Measures of Dispersion, standard deviation and Range	2	6, 14
	Student t test	2	13
	Regression	2	9
	Correlation	2	8
	one way and two way ANOVA, Application of statistical software for biological research	2	19
	Instructional Hours		12
	Tota	l Hours	60

- 1. Keith Wilson and John Walker, **Principles and Techniques of Biochemistry and Biology**, Cambridge University Press, Edition: 7, 2010.
- 2. Arora, P.N. and Malhan, P.K., Biostatistics, Himalaya Publishing House, 2006.
- Das, H. K., Text Book of Biotechnology, Wiley India Pvt. Ltd, Edition: 3, 2007. Unit I: Text Book 1, Chapter 1, 12 & 13. Unit II: Text Book 1, Chapter 11& 9. Unit III: Text Book 1, Chapter 3, 10& 12.
 - Unit IV: Text Book 2, Chapter 1& 5.
 - Unit V: Text Book 2, Chapter 3, 4, 6, 8, 9, 13, 14 & 19

Reference Book(s):

- 1. Sawhney, K. and Randhir Singh, **Introductory Practical Biochemistry**, Narosa Publishing House, 2010.
- 2. Gedder, A. and Balsar, L.E., **Principles of Applied Biomedical Instrumentation**, John Wiley and Sons, 2008.
- 3. Lee, T., Introductory Biostatistics, Wiley Interscience, 2011.
- 4. Stephen W. Looney, **Statistical Methods**, Humana publications, 2009.
- 5. Modern Boyer, Rodney F. Benjamin and Cummins, **Experimental Biochemistry**, 2nd Edition, 1999.
- 6. http://www.itl.nist.gov/div898/handbook/prisection3/pri3.htm (online e book)
- 7. http://www.statease.com/de7_man.html (Software Tutorial Website)

NASC 2021

CIA I	CIA II	CIA III	Seminar	Quiz	Assignment	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	Μ	L	М	Н	М	Н	М
CO2	Μ	L	L	Μ	Μ	L	L	L	Н	Н	Н	Н	Н
CO3	L	L	Μ	Μ	L	L	L	Μ	М	L	М	М	L
CO4	L	L	Μ	Μ	L	L	Μ	Н	Н	М	Н	М	L
CO5	Μ	Μ	L	L	L	Μ	Μ	Μ	Н	Н	М	Н	Н
		TT TT.	1 1/	1.	т	т							

Course Designed by	Verified by HOD	Checked by	Approved by

Course Code		Title	
21PGBTC205	Paper –V	Plant Biotechnol	ogy
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks

Course Objective:

To understand the in vitro culture techniques & genetic engineering in plants, mechanism and uses of transgenic plants and Industrial applications of plant products

Course Outcomes:

On successful completion of the course, the student will be able to

CO1	Outline requirements for plant tissue culture lab construction
CO2	Illustrate the methods of <i>invitro</i> culture and transformation techniques
CO3	Illustrate the gene transfer technology for transgenic plant production
CO4	Realize the importance of phytochemical in industry
CO5	Appropriate transformation technologies for production of transgenic plants

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
	Conventional plant breeding methods: Selection,	1	1
	nybridization, mutation and polypioldy.		
т	PIC Requirements: Design of Plant tissue culture		
I	Composition of MS media Gamborgs media Nitch's	1	23
	media Whites media and their preparation Plant growth	1	2,5
	regulators. Sterilization techniques.		
	Instructional Hours		12
	<i>Invitro</i> culture for plants: Micropropagation, Callus		
	culture, somatic embryogenesis, suspension culture,		8, 9
II	embryo culture, haploid culture, protoplast culture and	1	
	fusion; Somaclonal variation; Artificial seeds; Green house		
	conditions, hardening.		
	Instructional Hours		12
	Gene Transfer Methods: Agrobacterium mediated gene		
	transfer, Agrobacterium based vectors (Ti plasmids and Ri	•	
	plasmids), viral vectors and their applications. Direct gene	2	16, 23
111	transfer methods - electroporation, microinjection and		
	particle bombardment.		
	Characterization of transgenics, screenable and selectable	2	23
	markers. Marker free methodologies and gene targeting.		10
	Instructional Hours		12
IV	Secondary metabolic pathways in plants: Industrial phytochemical products from plants - Alkaloids,	3	6,7

	Biodegradable Plastics, Therapeutic proteins, biodegradable plastics, antibodies, plant vaccines, herbal drugs, bioethanol and biodiesel.	
	Instructional Hours	12
V	 Application of gene transformation in plant: Insect resistance, fungus resistance, virus resistance, drought, cold resistance, saline resistance, Transgenic plant with vitamin A, Gene silencing in crop plants, Terminator seed technology, Production of therapeutic antibodies, edible vaccine. Heat Shock Proteins, Male Sterile Lines, Nitrogen Fixation, long shelf life of fruits & flowers. Bioethics on transgenic plants. 	24
	Instructional Hours	12
	Total Hours	60

- 1. Razdan, M. K., Introduction to Plant Tissue Culture, Science Publisher Inc., UK.2003.
- 2. Chawla, H. S., Introduction to Plant Biotechnology, Science Publisher Inc., UK., 2002.
- 3. Srivatsava, S., and Narula, A., **Plant Biotechnology and Molecular Markers**, Springer, Netherlands, 2004.

Unit I : Text Book 1, Chapter 1, 2 & 3: 3-13, 22-35.

- Unit II : Text Book 1, Chapter 8 & 9: 87-199.
- Unit III: Text Book 2, Chapter 2: 359-394.
- Unit IV: Text Book 3, Chapter 6 & 7: 78-128.
- Unit V : Text Book 2, Chapter 24: 396-427.

Reference Book(s):

- 1. Mantel. S.H, Mathews. J.A. and Mickee, R.A., An Introduction to Genetic Engineering in Plants, Black well Scientific Publishers, London, 1985.
- 2. Pierik, R.L.M., *Invitro* Culture of Plants, Martinus Nijhoff Publishers, Dordrecht, 1987.
- 3. Dixon, R.A. and R.A. Gonzales. **Plant Cell Culture, A Practical Approach**, Oxford University Press, Oxford, 2nd Edition, 1994.
- 4. Grierson, D., and S.N. Covey, **Plant Molecular Biology.** Blackie & Sons. Ltd. Glascow, 1988.
- 5. Monica. A. Hughes, **Plant Molecular Genetics**, Pearson Education Ltd, England, 1999.
- 6. Mantell and Smith, Plant Biotechnology, Cambridge University Press, 1983.
- 7. <u>http://www.biologydiscussion.com/plants/plant-breeding-steps-and-methods-of-plant-breeding-for-disease-resistance/1340</u>
- 8. web.nchu.edu.tw/pweb/users/taiwanfir/lesson/1146.pdf

Tools fo	r Assessm	nent (50	Marks)
----------	-----------	----------	--------

CIA I	CIA II	CIA III	Seminar	Viva voce	Mini project	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	Μ	Н	Μ	L	L	L	Μ	Н	М	L	L	М
CO2	L	L	Μ	L	L	L	L	L	Н	Н	Н	М	М
CO3	Μ	L	Μ	L	L	Μ	L	L	М	Н	Н	L	М
CO4	L	Μ	Μ	Н	L	Μ	L	L	Μ	Н	Μ	L	М
CO5	L	Μ	Μ	Μ	L	Μ	L	Μ	Η	Н	Н	М	М

Course Designed by	Verified by HOD	Checked by	Approved by

Course Code	Title								
21PGBTC206	Paper – VI G	Paper – VI Genetic Engineering							
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks						

Course Objective:

To provide the student with the relevant background information necessary to understand genetic engineering and in particular to gene cloning, recombinant protein manipulation and produce safely, stability and authentically using an appropriate cell based system

Course Outcomes:

On successful completion of the course, the student will

CO1	Know different tools of Genetic Engineering										
CO2	Understand the technical know-how on versatile techniques in Genetic Engineering										
CO3	Apply Genetic Engineering Techniques in Basic and Applied Experimental Biology										
CO4	Have Proficiency in designing and conducting experiments involving genetic manipulation										
CO5	Understand the application of different types of PCR										

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	Genetic Engineering and Tools of Genetic Engineering: Introduction, scope and importance. Enzymes used in manipulation - Polymerases and types; nucleases - endonuclease, exonuclease and restriction enzymes; ligase; topoisomerase, methylase; other modifying enzymes. Linkers and adaptors.	1	4
	Instructional Hours		12
II	Vectors: general characteristics of vectors, Plasmid based- pBR 322, pUC vectors, Phage based-lambda, M13, Cosmids, Phagemids, Viral vectors – AAV, Baculo virus vectors , cloning and expression vectors, shuttle vectors, artificial chromosomes: YAC, PAC, BAC, HAC. Cloning and selection of individual gene, gene library and cDNA library.	1	2, 6, 7
	Instructional Hours		12
III	Transformation Techniques: Methods of DNA transfer, exogenously supplied chemical methods, calcium phosphate precipitation method, liposome mediated method and electroporation, gene gun method;	1	5

	Determination of transformation / transfection efficiency. Lambda DNA based DNA recombinants: <i>In vitro</i> packaging of DNA using packaging extracts infection of bacteria using packaged lambda viruses containing recombinant DNA.		
	Instructional Hours		12
IV	 Plating, screening and selection: Preparation of nutrient media with selection, marker antibiotics and additives for visual screening of recombinant clones, selection of clones, amplification and preservation. Labelling of DNA, RNA and proteins: Use of radioactive isotopes, Non-radioactive labelling relative advantages and disadvantages, <i>in vivo</i> labelling, Nick translation, random primer labelling, auto-radiography, auto-fluorography. 	2	5, 6, 7
	Instructional Hours		12
V	 Confirmation and analysis of expression of DNA: Blotting techniques - Southern, Northern and Western blotting, <i>In situ</i> hybridization, PCR based techniques - RT PCR, Real Time PCR, Assay based techniques - DNA and protein microarray. Genome analysis and genome editing technologies: Gene silencing – siRNA, microRNA; principle and application of gene silencing; gene knockouts - Cre-Lox systems; CRISPR-Cas9 systems. 	3	6
	Instructional Hours		12
	Tota	l Hours	60

- 1. Brown T.A., **Introduction to Gene Cloning**, Stanley Thomas Publishing Ltd, London, 3rd Edition, 1998.
- 2. Primrose, S.B., **Principles of Gene Manipulation**, Blackwell Science Ltd, Germany, 6th Edition, 2003.
- 3. Glick and Pasternak, Molecular Biotechnology, Principles and Application of Recombinant DNA, AMS Publications, US, 4th Edition, 2010.
 - Unit I: Text Book 1, Chapter 4, Page No. 47-74.
 - Unit II: Text Book 1, Chapter 2, Chapter 6 and Chapter 7, Page No. 13-24, 93-110 and 111-134.
 - Unit III: Text Book 1, Chapter 5 Page No. 75-92.
 - Unit IV: Text Book 2, Chapter 5, 6 and 7 Page No. 59-62, 63-72 and 73-88.
 - Unit V: Text Book 3, Chapter 6 Page No. 195-239.

Reference Book(s):

1. Old R.W. and S.B. Primrose, **Principles of Gene Manipulation**, Boston Blackwell Scientific Publications, 1994.

- Kingsman, S.M and A.J. Kingsman, Genetic Engineering: An Introduction to Gene Analysis and Exploitation in Eukaryotes, Blackwell Scientific publications, Oxford. 1998.
- 3. Davies J.A. and Reznikoff, **Milestones in Biotechnology**, classic papers on genetic engineering. Butterworth-Heinemnn, 1992.
- 4. John M Walker and Ralph Raply, **Molecular Biology and Biotechnology**, RSC Publishing, 5th Edition, 2009.
- 5. http://nptel.ac.in/downloads/102103013/

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Viva voce	Mini Review	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	Μ	L	L	L	Н	Μ	Μ	L	L
CO2	Μ	L	L	Μ	Μ	L	L	L	Н	М	Н	М	L
CO3	L	L	Μ	Μ	L	L	L	L	Μ	М	Μ	Н	Н
CO4	L	L	L	Μ	L	Η	Μ	L	L	M	Н	Н	Н
CO5	Μ	Μ	L	L	Μ	L	L	Μ	Μ	Н	Μ	Н	Μ

H-High; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by

NASC 2021

Course Code		Title		
21PGBTC207	Core Paper – VII Industrial Biotechnology			
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks	

Course Objective:

On successful completion of the course the students should have understood the basics of fermentation technology and learnt the concept of screening, optimization and Maintenance of cultures.

Course Outcomes:

On successful completion of the course, the students will be able to

CO1	Recall the basis of fermentation technology
CO2	Know the types of fermentation and fermenter used in industries
CO3	Develop the transport phenomena in bioprocess technology
CO4	Analyse the mechanism of fermenter in industry
CO5	Design the production process for industrially important products

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	 Historical overview of industrial fermentation process: traditional and modern Biotechnology. Advantages of bioprocess over chemical process: Basic function, design and body construction; Peripheral parts and accessories- Impellers types, sparger, temperature control: pH control and form baffles 	1	1
	Sterilization: Types of sterilization – Heat, Radiation and Filtration methods, air sterilization, Aseptic inoculation and sampling methods.	1	2
	Instructional Hours		12
ц	Types of fermentation – Solid state fermentation – Tray fermenter, Column fermenter, and Drum fermenter, Submerged fermentation – Batch and continuous, fed batch.	1	1
11	Types of fermenters - CSTR, Tower fermenter, Jet loop, Air lift, Bubble column, Packed bed, trickle bed reactor, Fluidized, Tubular fermenter. Immobilized enzyme and cells.	2	7
	Instructional Hours		12
III	Transport phenomena in bioprocess – Mass transfer resistance, Rate of oxygen transfer, determination of oxygen transfer coefficients. Biological heat transfer for microbial cultivations, Microbial growth Kinetics.	2	7

	Fermentors – Continuous parameters, sampling systems – Chemostat, Turbidostat. Containment – Mechanism of foam fermentations and foam breaking	2	8	
	Computers in bioprocess control systems, Biosensor.	2	9	
	Instructional Hours		12	
	Up-steam processing - Media formulation; Inocula development and Sterilization; Aeration and agitation in bioprocess; Measurement and control of bioprocess parameters.	2	10	
IV	Down Steam processing - Removal of microbial cells- Centrifugation, Sedimentation, Flocculation, Microfiltration, cell disruption – physical, chemical and enzymatic methods.	2	10	
	Purification of fermentation products - precipitation methods, membrane process, centrifugation – Ultracentrifugation; Purification by chromatography techniques, crystallization, drying, lyophilisation and packaging.	2	10	
	Instructional Hours		10	
V	Industrial Fermentative products: Production of secondary metabolites: Antibiotics - penicillin, Vitamin B ₁₂ , Production of enzymes: amylase, Production of organic acids: citric acid, Production of amino acids: Glutamic acid, Organic solvents - ethanol by Yeast, Production of recombinant and therapeutic proteins: Insulin, Interferon; Vaccines, and SCP and biofertilizers.	3	22	
	Instructional Hours	tal II anns	14	
	10	tal Hours	00	

- 1. Michael L. Shuler FikretKarg, **Bioprocess Engineering Basic Concept**, Prentice Hall International Services, 2nd Edition, 2001.
- 2. Peter. F. Stanbury, Allan Whitaker, Stephen. J. Hall, **Principles of Fermentation Technology**, Published by Elsevier Science Ltd., reprinted, 2nd Edition, 2007.
 - Unit I : Text Book 1, Chapter 1, 2
 - Unit II : Text Book 1, Chapter 1; Text Book 2, Chapter 7
 - Unit III: Text Book 2, Chapter 7; Text Book 2, Chapter 7
 - Text Book 2, Chapter 8; Text Book 2, Chapter 9
 - Unit IV: Text Book 2, Chapter 10
 - Unit V : Text Book 3, Chapter 22

Reference Book(s):

- 1. E.M.T El-Mansi and C. F. A. Bryce, **Fermentation Microbiology and Biotechnology**, Published by Taylor & Francis, Reprinted, 2002.
- 2. Pauline M. Doran, Bioprocess Engineering Principles, Elsevier, Reprinted, 2006.
- 3. Basantarai, Essential of Industrial Microbiology. Lulu publisher, 4th Edition, 2012.

- 4. Karia, G.L. and Christian, R.A. Prentice, **Waste Water Treatment: Concepts and Design Approach,** Hall of India private Limited, New Delhi, 2006.
- 5. Allsopp D. and Seal, K.J., **Introduction to Biodeterioration**, ELBS/Edward Arnold, London, 1986.
- Wulf Crueger and Anneliese Crueger, Biotechnology-A Textbook of Industrial Microbiology, Panima Publishing Corporation New Delhi. 2000. Reprinted, 2nd Edition, 2005.
- 7. De, A. K., Environmental Chemistry, Wiley Eastern Ltd. New Delhi, 1989.
- 8. P. R. Yadav and Rajn Tyagi, **Industrial Biotechnology**, Discovery Publishing House, New Delhi, 2005
- 9. Dr. Singh and Dr. S.K. Ghosh, **Industrial Biotechnology**, Global Vision Publishing House, 2004.
- 10. https://www.pdfdrive.net/modern-industrial-microbiology-and-biotechnologyd14938252.html

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Demonstration	IV* / Case Study	Total
8	8	10	8	8	8	50

***Industrial Visit / Educational Tour:** Student may go for Industrial Visit and Educational Tour in any biotechnological industry or laboratories and observe their lab, infrastructure, products and lectures. After the visit students should submit the detailed reports about the programme with photos in an assignment.

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	L	L	L	L	L	Н	Μ	Η	Μ	L
CO2	L	L	Μ	Μ	Μ	L	L	Μ	Н	М	М	Н	М
CO3	L	Μ	L	L	Μ	L	L	L	М	М	L	Н	Н
CO4	L	L	Μ	L	L	L	L	L	Н	М	Н	Н	Н
CO5	L	L	Μ	Μ	L	L	L	Μ	М	М	L	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title		
21PGBTC208	Core Paper – VIII Bioethics, Biosafety and IPR			
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks	

Course Objective:

To enable the students get an idea about the advantages and disadvantages of biotechnological applications ethical implications and intellectual property rights

Course Outcomes:

On successful completion of the course, the students will be able to

CO1	Understand the basics of Bioethics and ethical aspects
CO2	Outline the ethical implications of genetic modifications
CO3	Assess the risk management and biosafety guidelines to be followed at different situations
CO4	Analyze the intellectual properties and patent rules
CO5	Compare and contrast the IPR at different parts of the world

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
	Introduction to ethics/bioethics: Framework for ethical decision making	1	1
Ι	Biotechnology and ethics: Benefits and risks of genetic engineering, ethical aspects of genetic testing, ethical aspects relating to use of genetic information. Genetic engineering and biowarfare	1	1
	Instructional Hours		12
	Ethical implications of cloning: Reproductive cloning,	1	5
II	therapeutic cloning. Ethical, legal and socioeconomic aspects: Aspects of gene therapy, germ line, somatic, embryonic and adult stem cell research.	1	5
	GM crops and GMO's	1	9
	Biotechnology and biopiracy – ELSI of human genome project.	1	5
	Instructional Hours		12
	Introduction to biosafety: Biosafety issues in biotechnology. Risk assessment and risk Management, safety protocols: risk groups .	1	7
III	Biosafety levels, biosafety guidelines and regulations (National and International). Operation of biosafety guidelines and regulations, types of biosafety containment.	1	7
	Instructional Hours		12

	Total H	lours	60
	Instructional Hours		12
	National and International Patenting.		
V	life, legal protection of biotechnological Inventions.	2	7
	Patents: What can and what cannot be patented. Patenting		
	Instructional Hours		12
	intellectual Property rights organization (WIPO)		
	geographical indications, importance of IPR. World	2	3
	Types: patents, copy rights, Trade marks, design rights,		
1V	intellectual property rights.	Z	1
TX 7	Introduction to IPR: Intellectual property and	2	1

- 1. Sateesh M.K., **Bioethics and Biosafety**, I.K. International Publishing House Pvt. Ltd. 2008.
- 2. Das, H.K., Text Book of Biotechnology, Edition: 3, Wiley India Pvt. Ltd. 2007.
- 3. Ramdass, P., Animal Biotechnology Recent Concepts and Development, MJP Publishers, 2008.

Unit I: Text Book 1, Chapter 1 & 2, Page Nos.: 1-13

Unit II: Text Book 1, Chapter 5, Page Nos.: 123-128; Chapter 9, Page Nos.: 217-241

Unit III: Text Book 1, Chapter 7, Page Nos.: 159-209

Unit IV: Text Book 2, Chapter 1, Page Nos.: 1-19; Chapter 3, Page Nos.: 47-60

Unit V: Text Book 2, Chapter 7, Page Nos.: 116-127

Reference Book(s):

- 1. Jose Cibelli, Robert P. lanza, Keith H. S. Campbell, Michael D. West, **Principles of Cloning**, Academic Press, 2002.
- 2. http://books.cambridge.org/0521384737.htm
- 3. http://online.sfsu.edu/%7Erone/GEessays/gedanger.htm
- 4. <u>http://www.actahort.org/members/showpdf?booknrarnr=447_125</u>
- 5. <u>http://www.cordis.lu/elsa/src/about.htm</u>
- 6. Das, H.K., Text Book of Biotechnology, Edition: 3, Wiley India Pvt. Ltd. 2007

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Assignment	Case study	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	L	L	Μ	Μ	L	L	Н	Н	Μ	М	L
CO2	L	L	Μ	L	L	L	Μ	L	М	Н	Н	L	L
CO3	L	L	L	Μ	L	Μ	Μ	L	М	Н	Н	Н	Н
CO4	L	Μ	L	L	L	Μ	L	L	L	М	Н	Н	Н
CO5	L	L	Μ	L	Μ	Μ	L	L	М	Н	М	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title					
21PGBTQ201	Practical – I Biochemis	Practical – I Biochemistry and Industrial Biotechnology					
Semester: I & II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks				

Course Objective:

To understand the principles behind the qualitative, quantitative estimation of biomolecules, production of industrial important products, purification and its kinetics analysis.

Course Outcomes:

On the successful completion of the course the students will get an overall understanding of **CO 1** Biosafety guidelines

COT	Biosalety guidennes
CO 2	Principal and quantification of biomolecules in unknown sample
CO 3	Biomolecules separation through various chromatographic techniques.
CO 4	Production of industrial important enzymes and its kinetic analysis.
CO 5	Purification of industrial important enzyme

Offered by: Biotechnology

Course Content

S. No	Experiment
Biochemis	stry
1.	Safety guidelines in Biochemistry laboratory practices.
2.	Estimation of reducing sugars by Nelson - Somogyi method
3.	Estimation of total carbohydrates by Anthrone method
4.	Estimation of acid value, saponification value, Iodine number of fat
5.	Estimation of total free amino acids
6.	Estimation of DNA by DPA Method
7.	Estimation of RNA by Orcinol method
8.	Protein estimation by Absorbance at 280nm and Lowry's method
9.	Paper Chromatography - separation of sugars
10.	Thin Layer Chromatography - separation of amino acids
11.	Estimation of ascorbic acid and riboflavin
12.	Estimation of calcium and iron
Industria	Biotechnology
13.	Production and estimation of biomass (SCP) – dry weight and wet weight method.
14.	Production of wine and Estimation of alcohol.
15.	Fermentation of wheat bran xylan by Trichoderma sp.,
16.	Isolation/extraction of industrially important enzyme (Amylase) and assay of amylase activity.
17.	Enzyme immobilization – Gel entrapment.
18.	Partial purification of amylase enzyme –ammonium sulphate precipitation, Dialysis, Gel permeation Chromatography.

M.Sc. Biotechnology

NASC	2021

	Total Hours	150
20.	Separation of proteins by SDS-PAGE.	
19.	Determination of enzyme kinetic parameters – pH, Temperature, Km, V Kcat.	/max and

Tools for Assessment (50 Marks)

Technical skill	Analytical Skill	Lab Performance	Test I	Test II	Observation note book	Total
8	8	8	10	10	6	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	L	Μ	L	Μ	Н	L	L	L	М	L	Μ
CO2	L	L	Μ	L	L	Н	L	L	L	М	L	L	Н
CO3	L	L	L	Μ	L	L	L	L	L	L	М	L	L
CO4	L	L	L	Μ	L	Μ	Н	L	L	L	М	L	Μ
CO5	L	L	Μ	L	М	L	L	L	L	М	L	М	L

Course Designed by	Verified by HOD	Checked by	Approved by

Course Code	Title						
21PGBTQ202	Practical – II Microbiol	Practical – II Microbiology and rDNA Technology					
Semester: I & II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks				

Course Objective:

To make the student should able to demonstrate practical experience of selected microbiological and molecular techniques.

Course Outcomes:

At the end of the course the students will able to

CO1	Know the importance of steps involved in microbiology and rDNA practicals
CO2	Understand the safety measure and regulations in handing the macromolecules
CO3	Demonstrate laboratory tools in rDNA technology
CO4	Exhibit techniques related to microbiology and molecular biology
CO5	Troubleshoot the problem related to molecular techniques

Offered by: Biotechnology

Course Content

Instructional Hours / Week: 5

S. No.	Experiment									
Microbi	ology									
1	Orientation to the Microbiology Laboratory (Safety Procedures and Precautions, General Laboratory Directions)									
2	Aicroscope : Bright-Field Light, Dark Field and Phase Contrast									
3	Handling and Examining Cultures									
4	Bacterial Motility									
5	Gram Staining									
6	Capsule Staining									
7	Endospore Staining									
8	Negative Staining									
9	Measurement of bacterial cell size									
10	Enumeration of bacteria from soil									
11	Morphology of fungi (Lactophenol Cotton Blue Technique)									
rDNA T	echnology									
12	Isolation of genomic DNA from bacteria									
13	Isolation of plasmid DNA from bacteria									
14	Restriction digestion of DNA									
15	Separation of DNA fragments using agarose gel electrophoresis									
16	Polymerase chain reactions									
17	17 Cloning, transformation and Screening recombinants									
	Total Hours150									

Tools for Assessment (50 Marks)

Technical skill	Analytical Skill	Lab Performance	Test I	Test II	Observation note book	Total
8	8	8	10	10	6	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	L	Μ	L	Μ	Н	L	М	М	L	L	Μ
CO2	L	L	Μ	L	L	Н	L	Μ	Н	М	L	Н	М
CO3	М	L	L	L	L	L	L	Μ	М	М	Н	Н	L
CO4	L	L	L	Μ	L	Μ	Н	L	Н	Н	Μ	Н	Μ
CO5	М	L	Μ	L	Μ	L	М	Н	М	Н	Н	М	Μ

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title									
21PGBTC309	Paper – IX Immunology and Immunotechnology									
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks							

Course Objective:

The objectives of this course are to make students learn about the structural features of the components of the immune system as well as their function. The major emphasis of thiscourse will be on the development of the immune system and mechanisms by which our body elicit the immune response.

Course Outcomes:

On the successful completion of the course the students will get an overall understanding of

CO 1	Basic knowledge of the organization and function of the immune system							
CO 2	Types of cells and organs involved in the process of immune response							
CO 2	Apply key immunologic concepts and methods to diagnose disease and immune							
003	disorders							
CO 4	Emphasize and describe antigen and antibodies as well as the interaction between							
004	them							
CO 5	Familiarize with immunization practices and strategies for manipulating the							
	immune system to benefit the patient							

Offered by: Biotechnology **Course Content**

Unit	Description	Text Book	Chapter
	Overview of Immune system:		
	History and scope of immunology.	1	1
	Types of Immunity: Innate and Acquired immunity	1	1
	Humoral, Cell Mediated immunity	1	1
т	Hematopoiesis	1	2
1	Cells and Organs of the Immune system:		
	Cells of immune system	1	2
	Lymphoid organs (primary and secondary)	1	2
	Antigen processing and presentation-endogenous antigens,	1	8
	exogenous antigens,	1	
	Instructional Hours		12
	Generation of B-Cell and T- Cell Responses:		
	Antigens - Immunogenicity versus Antigenicity, Epitopes, Haptens, adjuvants and Super antigens	1	3
	Factors that influence Immunogenicity	1	3
II	Antibodies – Basic structure, Classes, functions and biological activities.	1	4
	Organization and expression of Immunoglobulin Gene.	1	5
	Maturation, Activation and Differentiation of B and T lymphocytes	1	10,11
	MHC molecules – General organization and Inheritance	1	7
	Instructional Hours		14

Immune Effector Mechanism:		
Complement system: Structure, components, functions,	1	13
Regulation and Biological Consequences	-	10
Cytokines: Secretion, Properties and Therapeutic uses.	1	19
III Hyper sensitivity reactions and Cooms clasification	1	16
ABO blood glrouping, RH typing, Erythroblastosis fetalis	1	16
Auto immune disorders, deficiencies (Primary and	1	19.20
secondary)	1	17,20
Immuno tolerance	1	21
Instructional Hours		14
Antigen antibody interactions: Precipitation,	1	6
Agglutination	-	0
Immuno Precipitation : Immunodiffusion,	1	6
immunoelectrophoresis	-	Ũ
IV Advanced immunological Technique: RIA, ELISA	1	6
Western blotting, ELISPOT assay	1	6
FlowCytometry, Immuno – Fluorescence	1	6
Hybridoma technology	1	6
Immunoelectron microscopy	1	4
Instructional Hours		10
Tissue and organ transplant: Mechanism of graft rejection, HLA typing	1	21
Tumor immunology: tumor antigens	1,2	22,16
immune responses and therapy	1	22
Vaccinology: Active and passive immunization	1	18
V Types of vaccines: Live, Heat killed, Inactivated,	1	18
Vaccine technology: Recombinant Vaccines, Pentide and		
DNA vaccines	1	18
Synthetic vaccines, catalytic antibodies, Plant- based vaccines	1	18
Instructional Hours		10
Total Hours		60

- 1. Richard A. Goldsby, Thomas J. Kindt, Janis Kuby, Barbara A. Osborne., **Immunology**, WH Freeman & Company, New York, 5thEdition, 2003.
- 2. Arthur Rabson, Ivan M.Roitt, Peter J. Delves., **Really Essential Medical Immunology**, Blackwell Publishing Pvt. Ltd., 2ndEdition, 2005.

Unit I: Text Book 1, Chapter 1, Chapter 3: Page No. 57 - 73, Chapter 7: Page No. 161 – 174, Chapter 8: Page No. 185 – 196
Unit II: Text Book 1, Chapter 2: Page No. 24 – 53, Chapter 4: Page No. 76 – 99, Chapter 5: Page No. 106 – 115, Chapter 10: Page No. 221 - 244, Chapter 11: Page No. 247 – 263, Chapter 12: Page No. 278 - 292
Unit III: Text Book 1, Chapter 13: Page No. 299 - 317, Chapter 16: Page No. 363 - 386, Chapter 19: Page No. 431 – 458, Chapter 20: Page No. 462 – 479, Chapter 21: Page No. 481 – 498

Unit IV: Text Book 1, Chapter 4: Page No. 99 –101, Chapter 6: Page No. 137

NASC | 2021

- 155,

Unit V: Text Book 1, Text Book 1, Chapter 18: Page No. 413 – 427, Chapter 21: Page No. 481 – 498, Chapter 22: Page No. 502 – 523 Text Book 2, Chapter 17:Page No. 177-182.

Reference Book(s):

- 1. Roitt, I. M. and P. J. Delves., **Roitt's Essential Immunology**, Oxford: Blackwell Science, 10thEdition, 2001.
- William E.Paul., Fundamental Immunology, Raven Press, New York, 2ndEdition 1993.
- 3. Edward Harlow and David Lane., **Antibodies A laboratory Manual**, Cold Spring harbor Laboratory Press, 2ndEdition, 1999.
- 4. Chakravarthy, A.K., **Immunology**, Tata McGraw Hill Publishing Co. Ltd., New Delhi. 1996.
- 5. Ian R. Tizard., **Immunology**, Saunders college publishers, New York, 4thEdition, 1995.
- 6. http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Libraries/Bio%20Technology%20Library /Janis%20Kuby/Immunology,%20kuby.%205%20edition%20(260)/Immunology,%20 kuby.%205%20edition%20-%20Janis%20Kuby.pdf
- http://dl.mehrsys.ir/pdfbooks/Roitt_s%20Essential%20Immunology%20Thirteenth%20Edition(www.myupto date.com).pdf
- 8. http://www.m5zn.com/newuploads/2013/02/02/pdf/m5zn_ceecc60a799fcd6.pdf

Tools for Assessment (50 Marks)									
CIA I CIA II CIA III Seminar Model Assignment Total									
8	8	10	8	8	8	50			

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	L	L	Μ	L	Н	Н	Н
CO2	Μ	L	Μ	L	L	Μ	L	L	Н	L	М	Н	М
CO3	L	L	Н	Μ	L	L	Μ	Μ	Μ	Н	Н	Н	Н
CO4	Μ	L	Μ	L	L	Н	L	L	Н	Н	Н	М	Н
CO5	L	L	Μ	Μ	L	Н	Μ	L	Н	Н	М	М	L
	TT TT'	1 3 6 3	A 11	T T									

Countersigned by	Verified by HoD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title			
21PGBTC310	Paper – X Animal Biotechnology			
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks	

Course Objective:

To provide students with a scientific and technical understanding of animal biotechnology.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1	Understand the limitations and challenges facing the animal husbandries.
CO2	Describe the various biotechnologies available to the animal related fields.
CO3	Explain how developments in biotechnology may have applications in those fields.
CO4	Evaluate the public and ethical concerns over the use of animal cells.
CO5	Analyze the possible utilization of animal cell culture.

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter	
I	Introduction and lab requirements: Early history of cell culture. The use of animal cell culture - Tissue culture, organ culture and cell culture, applications for animal cell cultures.	1	1	
	Media: Physicochemical Properties, Balanced Salt Solutions, Complete Media, Serum, Disadvantages of Serum supplemented media, Serum-Free Media, Advantages of Serum-Free media.	2	8, 9	
	Instructional Hours		14	
п	Cell culture and characterization: Primary Culture- Isolation of Tissue, Steps involved in primary cell culture and Establishment of Cell culture.	2	11	
	Cell Lines- Nomenclature, Subculture and Propagation, Immortalization of cell lines.	2	12	
	Cell counting, Cell Proliferation, Plating Efficiency, Labeling Index.	2	15	
Instructional Hours			12	
III	Contamination and assay: Source of contamination, Type of microbial contamination, Monitoring, Eradication of Contamination Cross-Contamination	2	18	
	Cytotoxicity: measurement of cell death; Apoptosis and its determination; Cytotoxicity assays.	2	21	
Instructional Hours			12	
IV	Cryopreservation & Stem cell culture: Need of Cryopreservation, Preservation, Cell banks, Transporting Cells.	2	19	
Stem cell culture, embryonic stem cell and their applications.	2	23		
--	---	--	--	--
Instructional Hours		12		
Application of animal cell culture: Viral vaccines, and	1	12		
V monoclonal antibodies, Transgenic animals,				
Ethical issues in animal biotechnology	1	06		
Instructional Hours		10		
Total Hours				
	Stem cell culture, embryonic stem cell and their applications. Instructional Hours Application of animal cell culture: Viral vaccines, and monoclonal antibodies, Transgenic animals, Ethical issues in animal biotechnology Instructional Hours Total Hours	Stem cell culture, embryonic stem cell and their applications.2Instructional Hours1Application of animal cell culture: Viral vaccines, and monoclonal antibodies, Transgenic animals, Ethical issues in animal biotechnology1Instructional Hours1Total Hours1		

- 1. Michael Butler, **Animal Cell Culture and Technology**, BIOS Scientific Publishers, Tailor& Francis Group, London, 6th Edition, 2004.
- 2. Ian Freshney. R., Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 6th Edition6, 2010.
 - Unit I : Text Book 1, 2 Chapter 1, 8, 9, pages 5, 42,52
 - Unit II : Text Book 2, Chapter 11, 12, 15, pages -65, 78-90, 137
 - Unit III : Text Book 2, Chapter 18, 21, pages 212, 311-327
 - Unit IV : Text Book 2, Chapter 9, 23, pages 242, 362 371
 - Unit V : Text Book 1, Chapter 12, 6, pages 89-92, 38 39

Reference Book(s):

- 1. Jennie P. Mather (Editor), David Barnes (Editor), **Animal Cell Culture Methods**, Volume 57 (Methods in Cell Biology), Academic Press, 1st Edition, 2001.
- 2. Butler, M., Mammalian Cell Biotechnology: A Practical Approach, Oxford University Press, New York, 2005.
- 3. https://www.saasta.ac.za/Media-Portal/download/bio_fs01.pdf
- 4. https://www.kopykitab.com/Textbook-of-Animal-Biotechnology-by-B-Singh
- 5. https://www.elsevier.com/books/animal-biotechnology/verma

Tools for Assessment (50 Marks)						
CIA I	CIA II	CIA III	Seminar	Quiz	Assignment	Total
8	8	10	8	8	8	50

	Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	L	L	L	L	L	М	L
CO2	Μ	L	Μ	L	L	Μ	L	L	L	М	L	Н	S
CO3	L	L	Н	Μ	L	L	Μ	Μ	М	L	М	S	Н
CO4	Μ	L	Μ	L	L	Н	L	L	М	М	М	Н	Н
CO5	L	L	Μ	Μ	L	Н	Μ	L	М	М	М	Н	Н

Course Designed by	Verified by HoD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title		
21PGBTC311	Paper – XI Pharmaceutical Biotechnology			
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks	

Course Objective:

To understanding the principles of drug development and drug manufacturing Processes, pharmaceuticals of plant, animal and microbial sources, the quality control and ethics in bio pharmaceutical industries.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1	Recall the drug developmental process and drug discovery
CO2	Understand the guidelines of drug manufacturing process
CO3	Develop novel drugs and vaccine development.
CO4	Implement the knowledge in Quality control of drug manufacturing companies.
CO5	Evaluate the process of novel drug development

Offered by: Biotechnology **Course Content**

Unit	Description	Text Book	Chapter
	History of pharmaceutical industry	1	1
	Drug discovery and development	4	18
т	Pre-clinical and clinical trails	1	7
-	Definition: Generics and its advantages Bio generics and	1	7
	Bio-similars. Protein-based biopharmaceutical	-	,
	Instructional Hours		12
	Introduction to pharmaceuticals of animal, plant and	1	2, 3
	microbial origin.		
	Pharmacological, Microbial, Recombinant, Biochemical	4	18
	and Molecular level screening systems and their		
	construction strategies.	_	_
11	Hematopoietic growth factors, coagulation factors.	1	7
	therapy Insulin growth hormones_production and		
	applications.		
	Vaccine: genetically improved vaccines, synthetic peptide	5	3
	based vaccines, nucleic acid vaccines.		
	Instructional Hours		12
	Recombinant thrombolytic agents: Tissue type	1	6
Ш	plasminogen activator, First and second generation of		
	thrombolytic agents. Xenotransplantation in		
	pharmaceutical biotechnology.	1	7
	I ne role of biotechnology in forensic sciences.	1	/ 7
	Estimation of toxicity: LD50 and ED50.	1	/
	Instructional Hours		12

	Introduction to pharmacopoeia: Good microbiological	5	11
	techniques and good laboratory practice (GLP).		
	Basic principles of quality control (QA) and quality assurance (QC): Guidelines for QA and QC.	2	3
IV	Products Validation. Concept of biotech process validation, Cell lines culture process validation and characterization. Purification process for viral clearance, validation of recovery, Purification, Cleaning and Filtration.	2	4
	Instructional Hours		12
	Analytical methods in protein formulation: concentration, size, purity, surface charge, identity, structure / sequence, shape, activity. Introduction to drug designing and Search of database.	3	2
V	Bio safety guidelines. Risk and risk assessment. Bio safety levels.	5	17
	Basics of bioethics principles. International codes and guidelines in India.	5	17
	Ethics in post-genomic era.	5	17
		12	
		60	

- 1. Oliver Kayser, Rainer. H. Muller, **Pharmaceutical Biotechnology**, WILEY-VCM, Gmbh and co, Weincom, 2009.
- 2. **Hand Book of Good Laboratory Practices,** UNDP/World Bank/WHO Publications, 2010.
- 3. KithWilson and John Walker, **Principles and Techniques of Biochemistry and Biology**, Cambridge University Press, 7th Edition, 2010.
- 4. Ramdass, P., Animal Biotechnology Recent Concepts and Development, MJP Publishers, 2008.
- 5. Sateesh, M. K., **Bioethics and Biosafety**, I. K. International Publishing House Pvt.Ltd.2008.

Unit I :	Text Book 1, chapter 1, pages: 1-3, chapter 7, pages 119-122,
	Text book 4, chapter 18, pages 180-200.
Unit II :	Text Book 1, Chapter 2,3, pages 103-118, Chapter 7, 129-154,
	Text book 4, chapter 18, 180-200, Test book 5, chapter 3,
	pages 41-80.
Unit III :	Text Book 1, Chapter 6, pages 120-138, Chapter 7, pages 127-135
Unit IV :	Text Book 2, Chapter 3, pages 6 -8, chapter 4, pages 10-20,
	Text Book 5, Chapter 1, pages 263-281.
Unit V :	Text Book 3, Chapter 2, pages 20-25, Text book 5, chapter 17,
	pages 405 - 425

Reference Book(s):

- 1. Gareth Thomas, Medicinal Chemistry: An introduction, John Wiley, 2000.
- 2. Katzung, B.G., Basic and Clinical Pharmacology, Prentice Hall, 2004.
- 3. Ramabhadran T.V., **Pharmaceutical Design and Development- A Molecular Biology Approach**, Ellis Horwood Publishers, New York, 2005.

- 4. Goodman & Gilman's, **The Pharmacological Basis of Therapeutics**, McGraw-Hill Medical Publishing Division, New York, 11th Edition, 2006.
- 5. Sarfaraz K. Niazi, Handbook of Biogeneric Therapeutic Proteins: Regulatory, Manufacturing, Testing, and Patent Issues, CRC Press, 2006.
- 6. Rodney J Y Ho, MILO Gibaldi, **Biotechnology& Biopharmaceuticals Transforming Proteins and Genes into Drugs**, Wiley Liss, 1st Edition, 2010.
- 7. Brahmankar, D.M., and Jaiswal, S.B., **Biopharmaceutics and Pharmacokinetics: A Treatise**, Vallabh Publisher, 2008.
- 8. https://benthamscience.com/journals/current-pharmaceutical-biotechnology/

CIA I	CIA II	CIA III	Seminar	Group Discussion	Assignment	Total
8	8	10	8	8	8	50

Mapping

Tools for Assessment (50 Marks)

PO1 PO2 PO3 PO4 PO5 PO7 PSO₂ PSO3 PSO4 **PO6 PO8** PSO1 PSO5 CO1 L L Η Μ L М L L Μ М Μ L L **CO2** Μ М L L L Μ L L Μ Η Μ Μ L CO3 L Η М L L М М Μ Η Η Η L L **CO4** Μ L Μ L L Η L L М Μ Η Η L L М Η CO5 L М L М L L Η Η М Μ

H-High; M-Medium; L-Low

Course Designed by	Verified by HoD	Checked by	Approved by

NASC 2021

Instructional Hours / Week: 4

Course Code		Title			
21PGBTC312	Paper – XII Bioinformatics and System Biology				
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks		

Course Objective:

To know the computational analysis of genes and genomes, protein sequences, analyzing proteins in lab and protein and gene sequence modification methods.

Course Outcomes:

On successful completion of the course thee students will able to

CO1	List the importance of bioinformatics in systems biology
CO2	Explain computational analysis the sequences for gene prediction
CO3	Identify the use of genes and metabolic pathways in systems biology
CO4	Infer the appropriate tools in systems biology for modeling
CO5	Recognize the various concepts of OMICS technology

Offered by: Biotechnology

Course Content

Text Unit **Description** Chapter Book Biological Databases: Introduction to bioinformatics classification of biological databases, Biological data 1 12 formats, Application of bioinformatics in various fields. Ι Systems Biology: Understanding Biology at system level, requirement of system level understanding, 1 12 computing and system biology. **Instructional Hours** 14 Introduction to Sequence alignment: Substitution matrices -PAM and BLOSUM. Pairwise alignment methods; Multiple sequence alignment methods. Π 1 4,10 Evolutionary analysis: distances - clustering methods rooted and unrooted tree representation - Bootstrapping strategies. **Instructional Hours** 14 Genes and Genomes: Interpreting expression data using Gene Ontology; Evolution of modularity and Ш transcriptional networks, metabolite sensing 3 5 and translational control; Microarrays-types and applications. **Instructional Hours** 10 Metabolic pathway database: KEGG pathway database, Concept of metabolome and metabolomics. IV 4 24 Gene networks - Integration of Networks. **Instructional Hours** 10 **OMICS Concepts:** Genomics, Proteomics, transcriptomics, interactomics, Phenomics, localizomics; V 3 7 Combination of omics approaches: data integration, modeling; Synthetic biology **Instructional Hours** 12 **Total Hours** 60

- 1. Rastogi, C. S., Namita Mendiratta, **Bioinformatics-Methods and Applications**, PHI Learning Pvt. Ltd., 4th Edition, 2013.
- 2. https://nptel.ac.in/courses/102106035/Module%201/Lecture%201/Lecture%201.pdf
- 3. Harisha, S., **Fundamentals of Bioinformatics**, I. K. International Publishing House, 1st Edition, 2007.
- 4. Sandy Primrose and Richard Twyman., **Principles of Gene Manipulation and Genomics**, Blackwell Publishing, 2010.
 - Unit I: Text Book 1, Chapter 1, Page No. 1-26.
 - Unit II: Weblink 2 NPTEL notes
 - Unit III: Text Book 3, Chapter 5, Page No. 106-126.
 - Unit IV: Text Book 4, Chapter 24, Page No. 472-479.
 - Unit V: Text Book 3, Chapter 7, Page No. 153-168.

Reference Book(s):

- 1. Teresa Attwood., **Introduction to Bioinformatics**, Pearson Publications, 1st Edition, 2007.
- 2. Andreas D. Baxevanis, B.F. Francis Ouellette., **Bioinformatics**, Wiley Publishers, 3rd Edition, 2011.
- 3. Dov Stekel., **Microarray Bioinformatics**, Cambridge University Press, 1st Edition, January 2010.
- 4. David Mount., **Bioinformatics: Sequence and Genome Analysis,** Cold Spring Harbor Lab Press, 2nd Edition, 2004.
- 5. https://www.ncbi.nlm.nih.gov/books/NBK143764/
- 6. https://www.expasy.org/links
- 7. https://ww2.chemistry.gatech.edu/~lw26/course_Information/4581/labs/tbp/rasmol/rasmol_tbp_fset.html

Tools for Assessment (50 Marks)						
CIA I	CIA II	CIA III	Assignment	Interpretation	Computation	Total
8	8	10	8	8	8	50

Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	L	Н	Μ	Μ	Μ	L	Н	М	Μ	L	L
CO2	L	L	L	Μ	Μ	L	L	L	Н	Н	Н	М	L
CO3	Н	Μ	Μ	L	L	L	L	Μ	М	Н	Н	М	М
CO4	Μ	L	L	Н	L	L	Μ	Μ	М	Н	М	Н	М
CO5	L	Μ	L	Μ	L	L	L	L	М	L	L	L	Н

Course Designed by	Verified by HoD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title					
20PGBTQ403	Practical III - Plant	Practical III - Plant and Animal Biotechnology				
Semester: III & IV	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

Course Objective:

To provide the student with the relevant practical knowledge on maintenance and preservation of animal cells in vitro, plant propagation and production of transgenic plants

Course Outcomes:

On successful completion of the course the students will be able to

CO 1	Understand different tissues culture media, micropropagation methods and	ł			
COT	transgenic plant production technology				
CO 2	Establish, maintain and preserve animal cells in vitro				
CO 3	Qualitative and quantitative analysis of plant genomic DNA				
CO 4	Isolate plasmid DNA from Agrobacterium sp.				
CO 5	Analyze the plant transformation techniques				

Offered by: Biotechnology

Course Content

S. No.	Experiment
Plant Bi	otechnology
1.	Composition and preparation of media and sterilization
2.	In vitro Seed Germination
3.	Micropropagation - Nodal and apical meristems.
4.	Callus induction, regeneration and acclimatization
5.	Suspension cultures
6.	Anther culture
7.	Embryo culture and somatic embryogenesis
8.	Protoplast Isolation and Viability Testing
9.	Synthetic Seeds
10.	Isolation of plant genomic DNA
11.	Qualitative and quantitative analysis of plant genomic DNA
12.	Agrobacterium mediated transformation
Animal l	Biotechnology
13.	Sterilization techniques – Glasswares and Media.
14.	Preparation of culture media and sera
15.	Preparation of primary cell culture
16.	Trypsinizing and subculturing cells from a monolayer
17.	Passaging cells in suspension culture
18.	Determining cell number and viability with Trypan blue staining
19.	Cell Cytotoxicity assay - MTT
20.	Cryopreservation of cells
	Total Hours 150

Handling Skill	Analytical Skill	Lab Performance	Test I	Test II	Observation note book	Total
8	8	8	10	10	6	50

Tools for Assessment (50 Marks)

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	L	L	Μ	L	L	L	Н	Μ	L	L
CO2	L	L	Μ	L	L	L	L	L	L	М	L	М	Μ
CO3	L	L	1	L	L	L	L	L	Μ	Н	Н	М	L
CO4	L	L	Μ	L	L	Μ	L	L	Μ	L	Н	Н	Н
CO5	L	L	М	L	L	L	М	L	L	Н	М	М	М

Course designed by	Verified by HoD	Checked by	Approved by

Course Code		Title			
21PGBTQ404	Practical – IV Immunology and Pharmaceutical Biotechnology				
Semester: III & IV	Credits: 4	CIA: 50 Marks	ESE: 50 Marks		

The objectives of this laboratory course is to make students to develop an understanding about practical aspects of the components of the immune system, drug development and how they can be used in drug designing.

Course Outcomes:

On the successful completion of the course the students will get an overall understanding of

CO1	Basic knowledge regarding general methods to identify immune response
CO2	Fundamental knowledge on disease diagnosis and treatment
CO3	Apply their knowledge to develop a novel drug
CO4	Toxicological aspects of active ingredients and finished products
CO5	Evaluate the usefulness of immune techniques in different pharmaceutical
005	companies.

Offered by: Biotechnology

Course Content

S. No	Experiment
	Immunology
1.	Preparation of antigens – protocol of immunization, methods of bleeding.
2.	Study on Blood Cells
	Identification of blood cells
	Differential count of blood cells
3.	Agglutination test
	ABO Blood grouping
	Widal test for typhoid fever (qualitative test)
4.	Passive agglutination test
	Anti - Streptolysin O (ASO) test
	C-Reactive Protein (CRP) test
5.	Agglutination inhibition test - Pregnancy test for detection of HCG
6.	Flocculation test - Rapid Plasma Reagin Test (RPR)
7.	Precipitation test
	Immuno diffusion
	Ouchterlony's Double Immunodiffusion Technique (ODD)
	Radial Immuno Diffusion (RID)
	Immunoelectrophoresis
	Rocket Immuno Electrophoresis (RIE)
	Counter Current Immunoelectrophoresis (CIE)
8.	ELISA (demonstration)
	Pharmaceutical Biotechnology
9.	Various modes of administration of drugs: Intravenous, Intramuscular, Intra- peritoneal, Interadermal
10.	Immunization and generation of antiserum in animals against antigen

M.Sc. Biotechnology

11.	Separation of IgG using affinity chromatography
12.	Identification, purification of Lead compounds from plant source.
13.	Optimization of Lead compounds from plant source.
14.	Experiments on LD ₅₀ and ED ₅₀ of biomolecules in animal model
15.	Microbial sensitivity of some human pathogens against lead compound
16.	Microbial analysis of pharmaceuticals (syrups)
	Total Hours 150

Tools for Assessment (50 Marks)

Handling Skill	Analytical Skill	Lab Performance	Test I	Test II	Observation note book	Total
8	8	8	10	10	6	50

Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	Μ	L	L	Μ	L	L	Н	Н	Μ	L	L
CO2	L	L	L	L	Μ	L	L	L	Н	М	L	М	Μ
CO3	L	L	Μ	L	L	L	L	Μ	Н	Н	Н	М	L
CO4	Μ	L	L	L	L	Μ	L	L	М	L	Н	Н	Н
CO5	L	L	М	L	L	L	М	L	Н	Н	М	М	Μ

Course designed by	Verified by HoD	Checked by	Approved by

Course Code	Title					
21PGBTV401	Research Project & Viva-Voce					
Semester: IV	Credits: 8	CIA: 100 Marks	ESE: 100 Marks			

Project Guidelines

1. ARRANGEMENT OF CONTENTS:

The sequence in which the project report material should be arranged and bound is as follows:

- 1. Cover Page & Title Page
- 2. Table of Contents
- 3. List of Tables
- 4. List of Figures
- 5. List of Symbols, Abbreviations
- 6. Chapters
- 7. References
- 8. Appendices

The table and figures shall be introduced in the appropriate places.

2. PAGE DIMENSION AND SIZE OF THE PROJECT REPORT:

- a) The size of the project report for undergraduate and post graduate degree should contain a minimum of 40 and 60 pages of content respectively. The pages will be counted from the first page of Chapter I. The dimension of the project report should be in A4 size.
- b) The project report should be bound using flexible cover of thick art paper. The cover should be **printed in black letters** and the text for printing should be identical.

c) Page Numbering

All page numbers (whether it is in Roman or Arabic numbers) should be typed without punctuation on the central bottom of each page. The preliminary pages of the reports (such as Title page, Acknowledgement, Table of Contents, etc.) should be numbered in lower case Roman numerals. The title page will be numbered as (i) but this should not be typed. The page immediately following the title page shall be numbered as (ii) and it should appear at the top right hand corner as already specified. Pages of main text, starting with Chapter 1 should be consecutively numbered using Arabic numerals.

3. PREPARATION FORMAT:

Cover Page & Title Page – A specimen copy of the Cover page & Title page of the project report are given in **Appendix 1**.

Table of Contents – The table of contents should list all material following it as well as the Abstract which precedes it. The Title page and Bonafide Certificate will not find a place among the items listed in the Table of Contents. **One and a half** spacing should be adopted for typing the matter under this head.

List of Tables – The list should use exactly the same captions as they appear above the tables in the text. **One and a half** spacing should be adopted for typing the matter under this head.

List of Figures – The list should use exactly the same captions as they appear below the figures in the text. **One and a half** spacing should be adopted for typing the matter under this head.

Table and figures - By the word Table, is meant tabulated numerical data in the body of the project report as well as in the appendices. All other non- verbal materials used in the body of the project work and appendices such as charts, graphs, maps, photographs and diagrams may be designated as figures.

List of Symbols, Abbreviations– One and a half spacing should be adopted for typing the matter under this head. Standard symbols, abbreviations etc. should be used.

Chapters – The chapters may be broadly divided into 3 parts introductory chapter,

- (i) Chapters developing the main theme of the project work
- (ii) Conclusions and scope
- The introductory chapter will have sections covering a general introduction and importance of the research project.
- The main text will be divided into several chapters and each chapter may befurther divided into several divisions and sub-divisions.
- Each chapter should be given an appropriate title.
- Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited.

Appendices – Appendices are provided to give supplementary information, which if included in the main text may serve as a distraction.

- Appendices should be numbered using Arabic numerals, e.g. Appendix 1, Appendix 2, etc.
- Appendices, Tables and References appearing in appendices should be numbered and referred at appropriate places just as in the case of Chapters.

• Appendices shall carry the title of the work reported and the same title shall be made in the contents page also.

List of References –The listing of references should be typed 4 spaces below the heading "REFERENCES" in alphabetical order in single spacing left – justified. The reference material should be listed in the alphabetical order of the first author. The name of the author / authors should be immediately followed by the year and other details.

- (i) If more than one paper by the same first author and same year of publications, the year of citation will be followed by a, b etc to differentiate them.
- (ii) While citing the paper in the text, the name of the first author and year alone must be cited. e.g Samson (2004) or Jeyaraj (2007a). The reference numbers should not be used in the text of the paper
- (iii) A paper, a monograph or a book may be designated by the name of the first author followed by the year of publication, placed inside brackets at the appropriate places in the Thesis.

4. TYPING INSTRUCTIONS:

The impression on the typed copies should be black in colour.

One and a half spacing should be used for typing the general text. The general text shall be typed in the Font style "Times New Roman" and Font size 13.

APPENDIX 1

TITLE <1.5 line spacing>

a project report submitted by

 <Italic>

NAME OF THE STUDENT (REGISTER NUMBER)

in partial fulfillment for the award of the degree

 <Italic> <1.5 line spacing>

in

NAME OF THE PROGRAMME

under the supervision of <Italic>

NAME OF THE SUPERVISOR

NAME OF THE DEPARTMENT

NEHRU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution affiliated to Bharathiar University) (Reaccredited with "A" Grade by NAAC, ISO 9001:2015 & 14001:2004 Certified Recognized by UGC with 2(f) &12(B), Under Star College Scheme by DBT, Govt. of India) Nehru Gardens, Thirumalayampalayam, Coimbatore - 641 105, Tamil Nadu.

MONTH & YEAR

EVALUATION PROCESS

Review – I has to be conducted during the Last week of December

Review – II has to be conducted during the Last week of February

Viva-Voce examination will be conducted at the end of the semester by both Internal (Respective Guides) and External Examiners, after duly verifying the Project Report available

Course Code	Title					
21PGBTE101	Elective Paper – I (A) Environmental Biotechnology					
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

On successful completion of the course the students should have understood the relationship of environment and biota, solve pollution problems, water process technology.

Course Outcomes:

On su	On successful completion of the course, the students will be able					
CO1	To recall the basic concepts of the environment and biota					
CO2	To demonstrate the dynamics and management of the ecosystem					
CO3	To develop methodology to solve pollution problems					
CO4	To plan the management of liquid waste					
CO5	To create the role of microbes in waste process technology					

Offered by: Biotechnology Course Content

Unit	Description	Text Book	Chapter
	Basic concepts: Interactions between environment and biota; Concept of habitat and ecological niches; Limiting factor; Energy flow, food chain, food web and tropic levels.	1	1
Ι	Ecological pyramids and recycling, biotic community - concept, structure, dominance, fluctuation and succession; Concepts and theories of evolution - Population ecology - community structure.	1	3
	Instructional Hours		12
П	Ecosystem dynamics and management: Stability and complexity of ecosystems; Speciation and extinctions; environmental impact assessment; Principles of conservation.	1	б
	Conservation strategies; sustainable development. Global environmental problems: ozone depletion, UV-B green house effect and acid rain, their impact in biotechnological approaches for management.	2	5
	Instructional Hours		12
Ш	Environmental pollution: Types of pollution, Methods for the measurement of pollution; Methodology of environmental management – the problem solving approach, its limitations. Air pollution and its control through Biotechnology. Water Pollution and control: Need for water management, Measurement and sources water pollution.	3	2

Chapter 5.

	Kind of aquatic habitats, (fresh and marine), distribution and impact of environmental factors on the aquatic biota, productivity, mineral cycles and biodegradation different aquatic ecosystems.	3	4
	Instructional Hours		12
187	Liquid waste management . Composition, BOD, COD and DO.	3	6
IV	Physical, Chemical and Microbiological treatment. Water borne diseases.	3	6
	Instructional Hours		11
v	Role of Microbes in waste process technology –Bioremediation, Bioleaching, Degradation of xenobiotics.Utilization of waste as food (SCP, Yeast and Mushroom),as fuel (Ethanol and Methane) as fertilizer (Algae) and asfeed (Algae and Yeast).Ecological considerations, decay behaviour and degradative	4	5
	plasmids; hydrocarbons, substituted hydrocarbons, oil pollution, surfactants, pesticides.	4	7
	Instructional Hours		13
	Tot	al Hours	60

Text Book(s):

- 1. Sharma, P.D., Ecology and Environment, Rastogi Publications, 2007
- 2. Paulsamy, S., **Introduction to Environmental Biology**, Emkay publications, 1998. Revised 2016.
- 3. Goel, P.K., **Water Pollution** (Causes, effects and control), New age international publishers, 2011.
- 4. Joseph, C. Daniel, Environmental aspects of Microbiology, Humana Press, 2013.

Unit I	: Text Book 1, Chapter 1, 3.
Unit II	: Text Book 1, Chapter 6; Text Book 2,
Unit III	: Text Book 3, Chapter 2, 4.
Unit IV	: Text Book 3, Chapter 6.
Unit V	: Text Book 4, Chapter 5, 7.

Reference Book(s):

- 1. Rao, C.S., **Environmental Pollution Control engineering**, New Age International, 2007
- 2. Vasudevan, N., Essentials of Environmental Science, Alpha Science International, 2006
- 3. Vijaya Ramesh, K., Environmental Microbiology, MJP Publishers, 2008.
- 4. Dr. Sushmitha Baskar and R. Baskar Environmental science for engineering under graduates, 1970.
- 5. Sunakar Panda, Environmental and Ecology, Vrinda Publications, 2007
- 6. Arumugam, N. and Kumaresan, V. Environmental Biology, Sara's publishers, 2013.
- 7. http://www2.hcmuaf.edu.vn/data/quoctuan/8122418481%20Environmental_Science.pdf
- 8. http://marno.lecture.ub.ac.id/files/2012/05/BIOLOGI-LINGKUNGAN.pdf

Tools for Assessment (50 Marks)	
---------------------------------	--

CIA I	CIA II	CIA III	Seminar	Short test	Viva voce	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	Μ	L	L	Μ	Μ	L	Μ	Μ	L	Н	L
CO2	L	L	Μ	L	Μ	L	L	Μ	Н	Н	М	Н	Н
CO3	Μ	L	L	Н	L	L	L	Μ	L	Н	Н	L	М
CO4	L	Μ	L	L	L	Η	Μ	L	Н	L	Н	L	М
CO5	Μ	Μ	L	Μ	L	L	L	Μ	Н	М	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by

Course Code	Title					
21PGBTE102	Elective Paper –	Elective Paper – I (B) BioEntrepreneurship				
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

This course will help students to recognize a business opportunity that fits the individual student and also to demonstrate the understanding of how to launch the individual's entrepreneurial career.

Course Outcomes:

On successful completion of the course, the students will be able to

CO1	Gaine Knowledge on how to assess business opportunities and an in – depth understanding of what typically characterize success and failures
CO2	Understand the key and the most effective processes in bringing different types of products or services to markets
CO3	Transform an initial idea in to a fully – fledged business opportunity and effectively communicate this opportunity through a business plan and pitch
CO4	Learn Technology and Entrepreneurship in a cross – disciplinary- fashion to identify and develop attractive opportunities within their field of experience
CO5	Identification of project selection and business opportunities

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
	Management and Practices: Introduction, definition – Management	2	1
	Principles of Henry Fayol	2	2
	Setting and Managing Biotechnology Industry: principles and decisions on starting a venture	5	7
Ι	Sources of financial assistance	5	7
	Making a business proposal	1	7
	Approaching loan from bank and other financial institutions	1	11
	Budget planning and cash flow management	1	10
	Basics in accounting practices	3	29
	Instructional Hours		13
	Process and Marketing: Recruitment and selection process	4	4
	Leadership skills and Managerial skills	2	2
п	Organization structure	2	2
	Training	4	8
	Team Building	4	8
	Marketing Definition and Functions	1	8

	Assessment of market demand for potential product (s) of	1	8
	Market conditions, segments; prediction of market changes	1	8
	Identifying needs of customers including gaps in the market.	1	8
	Instructional Hours		13
	Entrepreneur: Meaning of entrepreneur, evaluation of the concept, function of an entrepreneur types of entrepreneur	1	1
	Evolution of entrepreneurship	1	1
III	Development of entrepreneurship, stages in entrepreneurial process	3	9
	Role of entrepreneurs in economic development entrepreneurship in India	3	1
	Entrepreneurship - its barriers	3	7
	Instructional Hours		13
	Small Scale Industry: Definition, characteristic and Need and rationale	5	2
	Objectives, Scope, Role of SSI in economic development, Advantages of SSI	5	5
	Steps to start an SSI	5	6
IV	Govt. policy towards SSI, different policies of SSI, Govt. support for SSI during 5 year plans	5	6
	Impact of liberalization, privatization, globalization on SSI	5	17
	Effect of WTO/ GATT, Supporting agencies of Govt for SSI, meaning; nature of support, objectives, and functions	5	17
	Types of help, Ancillary industry and Tiny industry	5	8
	Instructional Hours		11
	Projects and Application: TECKSOK, KIADB, KSSIDC, KSIMC, DIC single window Agency SISI, NSIC, SIDBL KSEC	3	18
	Preparation of Project-Meaning of Project; Project Identification Project Selection. Project Report	3	11
V	Need and significance of Report, Contents, Formulation Guidelines by Planning Commission for Project report	3	12
	Network Analysis; Errors of Project Report, Project Appraisal	3	13
	Identification of Business Opportunities. Market Feasibility Study, Technical Feasibility study, Financial Feasibility Study & Social Feasibility study.	3	30
	Instructional Hours		10
	Tota	l Hours	60

- 1. Robert D. Hisrich, Michael P. Peters & Dean A. Shepherd, Entrepreneurship, Tata McGraw Hill, 2007.
- 2. Tripathy, P.C. and P. N. Reddy, McGraw Hill, Principles of Management, 2008.
- 3. Khanka, S.S., and S. Chand sons, Entrepreneurial Development, 2008.
- 4. Gary Desseler, **Human Resource Management**, Prentice Hall, Edition: 10, Prentice Hall Publishers, 2005.
- 5. Vasant Desai, Himalaya Publishing, **Dynamics of Entrepreneurial Development** and **Management**, 2007.
 - Unit I: Text Book 1 (Chapter 7, 10 & 11), 2 (Chapter 1 & 2), 3 (Chapter 29), & 5 (Chapter 7).
 - Unit II: Text Book 1 (Chapter 8), 2 (Chapter 2) & 4 (Chapter 4 & 8).
 - Unit III: Text Book 1 (Chapter 1) & 3 (Chapter 1, 7 & 9).
 - Unit IV: Text Book 5 (Chapter 2, 5, 6, 8 & 17).
 - Unit V: Text Book 3 (Chapter 11, 12, 13, 18 & 30)

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Viva voce	Seminar	Class Room Exercise	Total
8	8	10	8	8	8	50

Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	Μ	Μ	L	L	L	L	Н	Н	L	Н
CO2	Μ	L	L	Μ	L	L	Μ	L	М	L	Н	L	Н
CO3	L	L	Μ	L	L	L	Н	Μ	М	Н	L	Н	L
CO4	L	Μ	Μ	Μ	L	L	Н	L	Н	Н	Н	Н	Н
CO5	L	L	L	Μ	L	L	Η	Μ	L	М	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title					
21PGBTE103	Elective Paper – I (C) Research Methodology					
Semester: I	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

Course Objective:

The primary objective is to develop a research orientation among the students and to acquaint them with fundamentals of research methods. Specifically, introducing them to the basic concepts used in research and to scientific social research methods and their approach. **Course Outcomes:**

On successful completion of this course, the student will be able to understand the

CO1	Basic framework of research process
CO2	Various research designs and technique
CO3	Various sources of information for literature review and data collection
CO4	Ethical dimensions of conducting applied research
04	Appreciate the components of scholarly writing and evaluate its quality
CO5	Procedure for writing research proposal and grant

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	Objective and Steps in Research process : Definition, objectives of research. Types and its significance. Steps in research process. Criteria for good research.	1	1
	Literature survey, Development of working hypothesis.	1	2
	Instructional Hours		11
	Research design: Definition and related concepts, Basic principles of experimental designs- Informal and formal experimental designs	1	3
II	Sampling design: Steps in sample design, Non- probability sampling and Probability sampling -random sampling; Measurement and scaling techniques- Methods of data collection.	1	4 5
	Instructional Hours		13
ш	Sources of Data: Primary Data, Secondary Data; Procedure Questionnaire: Sampling Merits and Demerits - Experiments - Kinds - Procedure; Procedure Schedules: Sampling Merits and Demerits - Experiments - Kinds - Procedure;	1	6
	Control Observation: Merits - Demerits - Kinds - Procedure - Sampling Errors: Type-I Error, Type-II Error	1	9
	Instructional Hours		13
IV	Research report writing: steps in report writing layout of the Research Report, Types of Reports, Styles of reporting. Editing and evaluation of final draft, evaluating the final draft; Editing and	1 2	14 10 20

	evaluation of final draft, evaluating the final draft	
	Instructional Hours	12
V	Research proposal/Grant:Presentation of data - preparation of master's thesis for oral presentation;Presenting the research findings in open defense.Research proposal/Grant- definition, structure, budget2allocation, specific aims, background and significance.Hierarchy of funding agencies in India and their operations.	20
	Instructional Hours	11
	Total Hours	60

- 1. Kothari, C.R., **Research Methodology: Methods and Techniques,** New Age International Publishers, 2nd Edition, 2010.
- 2. Chawla Deepak & Sondhi Neena., **Research Methodology: Concepts and Cases**, Vikas Publishing House Pvt. Ltd. Delhi, 2011.
 - Unit I: Text Book 1, Chapter 1 & 2
 - Unit II: Text Book 1, Chapter 3-5
 - Unit III: Text Book 1, Chapter 6 & 9
 - Unit IV: Text Book 2, Chapter 10 & 20; Text Book 1, Chapter 14
 - Unit V: Text Book 2, Chapter 20

Reference Book(s):

- 1. Gurumani, N., **Research Methodology for Biological Science**, MJP Publishers, Chennai, 2006.
- 2. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118763025
- 3. <u>https://mtechlib.files.wordpress.com/.../</u>researchmethodology_stepbystepguide_R.kumar.
- 4. Rt. Kumar, Research Methodology: A Step-by-Step Guide for Beginners, SAGE pub., 2010.
- 5. C. R. Kothari, Research Methodology: Methods and Techniques, New Age Intl., 1985.

Tools for Assessment (50 Marks)									
CIA I	CIA II	CIA III	Seminar	Viva voce	Case study	Total			
8	8	10	8	8	8	50			

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	Μ	L	Н	L	L	М	Н
CO2	Μ	L	L	Μ	Μ	L	L	L	Н	М	М	М	Н
CO3	L	L	Μ	Μ	L	L	L	Μ	L	М	М	М	L
CO4	L	L	Μ	Μ	L	L	Μ	Н	L	L	М	М	Н
CO5	Μ	Μ	L	L	L	Μ	Μ	Μ	Н	М	Н	М	L

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title						
21PGBTE201	Elective Paper – II (A	Elective Paper – II (A) Agricultural Biotechnology						
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks					

Course Objective:

The primary objective is to develop a research in agriculture practices and crop improvement startergies.

Course Outcomes:

On successful completion of this course, the student will be able to

CO1	Understand the basic concept of biotechnology in Agriculture
CO2	Different techniques of Agriculture Biotechnology in Plant Breeding Methods
CO3	Sympathetic crop plantings through model biotechnological approach
CO4	Analyze the applications and environmental risk assessment on transgenic Plants
CO5	Apply biotechnology in agricultural field for crop improvement

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
Ι	Scope of Biotechnology in agriculture : Biotechnology in Agriculture, growth and historical perspective of agriculture biotechnology; Science of Genetic leading to modern biotechnology to agriculture.	1	1, 15, 16
	Instructional Hours		10
II	 Central Concepts in Plant Breeding: Simple versus complex Inheritance, Phenotype versus Genotype, Mating System, Varieties, Landraces and Pure Lines; Plant Breeding is a numbers Game; Plant Breeding is an Iterative and Collaborative process; Diversity; Adaptation and Ideotypes. Methods of Plant Breeding: Methods of Hybridization-Self-pollinated species, Out crossing species, Synthetic varieties, Hybrid varieties, Clonally propagated species. Breeding: enhancements: Double Haploidy, Marker-Assisted Selective, Mutation Breeding. 	1 2 1 2	3 6,7 3 4, 7
	Instructional Hours		14
ш	Biotechnology Crops Plantings : Farmers Use Biotech Crops; Herbicide Tolerant Crop, Insect Resistant Crops, Pathogen Resistance Crop; Environmental impact from changes in Insecticide and Herbicide use; Improved Products and Food Quality : Nutritional Improvements, Modified Plant Oils, Pharmaceutical Products, Biofuels. Impact on Green house (GHS) Emissions- Impact of Biofertilizers in agriculture - advantage and current status - Applying Biotechnology in Resource Poor Areas.	1	1, 8
	Instructional Hours		13

Total Hour	rs 60
Instructional Hours	10
Food, Fuel and Pharmaceuticals.	
Recombination System, Zinc-Finger Nucleases; Future of	
Future of Agriculture Biotechnology – Site specific	
(FTO), Strategies for Open Access.	16
Development Specific Promoters. Freedom to Operate	1.5
Selectable Markers, Constitutive Promoters, Tissue or	
Research: Anticommons – Transformation methods,	
Intellectual Property in Agricultural Biotechnology	_
Instructional Hours	13
Predicting; Potential Adverse Effects on Butterflies.	
Caterpillars, Statistical analysis and Relevance for	
Risk Assessment: Bt Maize Pollen on Non-target	
Tiered Risk Assessment.	
3), Risk Evaluation (ERA Step 4), Progression through a 1	13
Experiments and Gathering of Information (ERA Step	
Step 1), Problem Formulation (ERA Step 2), Controlled	
Risk Assessment (Era) Process- Initial Evaluation (ERA	
Field Testing of Transgenic Plants: Environmental	
	Field Testing of Transgenic Plants: Environmental Risk Assessment (Era) Process- Initial Evaluation (ERA Step 1), Problem Formulation (ERA Step 2), Controlled Experiments and Gathering of Information (ERA Step 3), Risk Evaluation (ERA Step 4), Progression through a 1 Tiered Risk Assessment.1Risk Assessment: Risk Assessment: Bt Maize Pollen on Non-target Caterpillars, Statistical analysis and Relevance for Predicting; Potential Adverse Effects on Butterflies.1Intellectual Property (Research; Anticommons – Transformation methods, Selectable Markers, Constitutive Promoters, Tissue or Development Specific Promoters. Freedom to Operate (FTO), Strategies for Open Access.1Future of Agriculture Biotechnology Food, Fuel and Pharmaceuticals.1Instructional Hours1Total Hours

- 1. Stewart, C. Neal. Plant Biotechnology and Genetics; Principles, Techniques and Applications. John Wiley & Sons, Inc. Canada, 2008.
- 2. Acquaah, George, **Principles of Plant Genetics and Breeding** 2nd Edition, John Wiley & Sons, Inc. Canada, 2012.
 - Unit I : Text Book 1, Chapter 1, 15, 16
 - Unit II : Text Book 1, Chapter 3; Text Book 2, Chapter 4, 6, 7
 - Unit III: Text Book 1, Chapter 1, 8
 - Unit IV: Text Book 1, Chapter 13
 - Unit V: Text Book 1, Chapter 16

Reference Book(s):

- 1. Kumar H.D., Agricultural Biotechnology, Daya Publishing House, 2005.
- 2. Arie Altman, Agricultural Biotechnology, CRC Press, 1997.
- 3. Ahindra Nag, Agricultural Biotechnology, PHI Learning Pvt.Ltd. 2008
- 4. Ashok Kumar, Agricultural Biotechnology, Discovery Publishing House, 2005.
- 5. <u>https://www.pdfdrive.net/plant-mutation-breeding-and-biotechnology-d18117949.html</u>

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Seminar Viva voce		Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	Μ	L	L	Μ	Μ	L	Н	L	L	М	Н
CO2	L	L	Μ	L	Μ	L	L	Μ	Н	М	М	М	Н
CO3	М	L	L	Η	L	L	L	Μ	Н	М	Μ	М	Н
CO4	L	Μ	L	L	L	Η	Μ	L	Н	М	М	М	Η
CO5	Μ	Μ	L	М	L	L	L	Μ	Н	М	Н	М	Н

Course Designed by	Verified by HOD	Checked by	Approved by

Course Code		Title	
21PGBTE202	Elective Paper – I	(B) Downstream P	rocessing
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50Marks

To realise the importance of basics in assemblage of small molecules and to utilise in retrieving meaningful conclusion through problem based learn. Understand the methods to obtain pure proteins, enzymes and in general about product development R & D. Have depth knowledge and hands on experience with on downstream processes

Course Outcomes:

On successful completion of the course, the students will be able to

CO1	Explain the fundamentals of downstream processing for product recovery
CO2	Understand the requirements for successful operations of downstream processing
CO3	Confess the components of downstream equipment and explain the purpose of each
COS	steps
	Apply principles of various unit operations and enhance problem solving techniques
CO4	required in multi-factorial manufacturing environment in a structured and logical
	fashion
CO5	Formulation of final product

Offered by: Biotechnology

Course Content

Instructional	Hours /	Week: 4

Unit	Description	Text Book	Chapter
I	Introduction: Principles characteristics of biomolecules and bioprocesses. Cell disruption for product release – mechanical, enzymatic and chemical methods. Pretreatment and stabilisation of bioproducts	1,4	2,5
	Instructional Hours		12
II	Separation and Purification: Unit operations for solid- liquid separation – filtration and centrifugation	2,1	7,3,4
	Instructional Hours		9
III	Separation and Purification: Adsorption, liquid-liquid extraction, aqueous two-phase extraction, membrane separation – ultrafiltration and reverse osmosis, dialysis, precipitation of proteins by different methods	1,2	5
	Instructional Hours		15
IV	Chromatography: principles, instruments and practice, adsorption, reverse phase, ion-exchange, size exclusion, hydrophobic interaction, bioaffinity and pseudo affinity chromato graphic techniques, Paper and TLC – Separation of flavanoids, proteins, Phytosterols, Nucleic acids, nanoparticles and functionalised nanoparticles. Purification chart to assess purity.	3,4	8,7
	Instructional Hours		15
V	Lyophilisation: Crystallization, drying and lyophilisation in final product formulation	1	16

2. Erwin H. Segel, **Biochemical calculations**, 2nd Edition, John Wiley & Sons, 2004.

Total Hours

3. David Freifelder, **Physical Biochemistry**, W.H. Freeman & Company, 2nd Edition, 2008.

Instructional Hours

4. Simon Roe, Protein purification techniques, 2nd Edition, Oxford Press, 2004

1. Sivasankar, B., Bioseparations - Principles and Techniques, PHI, 2005.

- Unit I: Text Book 1 (Chapter 2, 13-25), Text Book 4 (Chapter 5, 83-108)
- Unit II: Text Book 2 (Chapter 7, 193-213), Text Book 1 (Chapter 3, 4, 26-53)
- Unit III: Text Book 1, 2 (Chapter 5, 54-67; 150-152)
- Unit IV: Text Book 3 (Chapter 8, 216-271), Text Book 4 (Chapter 7-155-182, Chapter 8- 187-208)

Unit V: Text Book 1 (Chapter 15, 255-265)

Reference Book(s):

Text Book(s):

- 1. https://www.researchgate.net/publication/227176832_Downstream processing of bi otechnological produced succinic acid
- 2. Chunlian Tian, Peng Zhang, Caixia Yang, Xiang Gao, Hong Wang, Yuru Guo, and Mingchun Liu, Extraction Process, Component Analysis, and In Vitro Antioxidant, Antibacterial, and Anti-Inflammatory Activities of Total Flavonoid Extracts from Abutilon theophrasti Medic. Leaves Mediators of Inflammation, Volume 2018, Article ID 3508506, https://doi.org/10.1155/2018/3508506
- 3. Fernandes, J.M.S. Cabral, Phytosterols: Applications and recovery methods, Bioresource Technology, 98 (2007) 2335–2350.
- 4. Belter, P.A. E.L. Cussler and Wei-Houhu, Bioseparations Downstream Processing For Biotechnology, Wiley Inter-science Pun, 1988.

CIA I	TODISTOF TA I CIA II CIA III		Seminar	Group	Viva voce	Total
8	8	10	8	8	8	50

Monning

To	ols i	for A	Assessment	(50	Marks)
----	-------	-------	------------	-----	-------	---

	Trupping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	Μ	L	L	Μ	Μ	L	Н	Н	М	М	L
CO2	L	Μ	Μ	L	Μ	L	L	Μ	Н	Н	М	М	L
CO3	Μ	L	L	Н	L	L	L	Μ	L	Н	Н	Н	Н
CO4	L	L	L	Μ	L	Н	Μ	L	Н	М	Н	Μ	L
CO5	L	L	L	Μ	Μ	L	L	Μ	М	Н	М	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by

NASC 2021

9

60

Course Code		Title	
21PGBTE203	Elective Paper – II	(C) Applied Biosta	tistics
Semester: II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks

This course provides an introduction to applied statistics, with an emphasis on medical and epidemiological data.

Course Outcomes:

At the end of the course a student should be able to

CO1	Demonstrate an organized approach to the analysis of data collected to answer a scientific question
CO2	Refine a scientific question into a statistical framework. Identifying the response variable and an appropriate summary measure of that variable. Identifying the predictor of interest
CO3	Ascertaining and computing appropriate summary statistics and graphical displays.
CO4	Analyze the sampling distribution statistic and application of basic tools in research
CO5	Apply the Categorical Data and Chi-Square Tests in sample analysis

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	Types of Studies: Surveys and Cross-Sectional Studies, Retrospective Studies, Prospective Studies, Experimental Studies and Quality Control, Clinical Trials	1	1
	Instructional Hours		13
II	Basic Epidemiological Concepts: Introduction to basic epidemiological concepts, such as study designs as well as the difference between observational studies and randomized clinical trials.	1	1& 2
	Instructional Hours		13
III	Selecting Proper Statistical Tests: Simple Random Sampling, Bootstrap Sampling, Convenience Sampling, Systematic Sampling, Cluster Sampling	1	2
	Instructional Hours		13
IV	Correlation and Regression: Correlation, Linear Regression, and Logistic Regression	2	11
	Instructional Hours		11
V	Categorical Data and Chi-Square Tests: Understanding Chi-Square, Chi-Square Distributions and Tables, Testing Independence between Two Variables, Testing for Homogeneity, Testing for Differences between Two Proportions, The Special Case of 2×2 Contingency Table, Simpson's Paradox in the 2×2 Table, McNemar's Test for Correlated Proportions,	1	11

Relative Risk and Odds Ratios, Goodness of Fit Tests-	
Fitting Hypothesized Probability Distributions,	
Limitations to Chi-Square and Exact Alternatives.	
Instructional Hours	10
Total Hours	60

- 1. Michael R. Chernick and Robert H. Friis, Introductory Biostatistics for the Health Sciences (Modern Applications Including Bootstrap), John Wiley & Sons, Inc. Canada, 2003.
- 2. Gerald Van Belle, Lloyd D. Fisher, Patrick J. Heagerty, Thomas Lumley., **Biostatistics** (A Methodology for the Health Sciences), John Wiley & Sons, Inc., 2004.
 - Unit I : Text Book 1, Chapter 1: 8-19.
 - Unit II: Text Book 1, Chapter 1 and 2: 14-45.
 - Unit III: Text Book 1, Chapter 2: 14-45.
 - Unit IV: Text Book 2, Chapter 11: 428-519.
 - Unit V: Text Book 1, Chapter 11: 231-250

Reference Book(s):

- 1. Stephen C. Newman, **Biostatistical Methods in Epidemiology**, John Wiley & Sons, Inc., 2001.
- 2. Lee, T., Introductory Biostatistics, Wiley Interscience, 2011
- 3. Stephen W. Looney, Statistical Methods, Humana publications, 2009.
- 4. https://catalyst.harvard.edu/services/biostatscertificate/
- 5. https://www.edx.org/course/introduction-applied-biostatistics-osakaux-med101x-0
- 6. <u>https://www.statistics.com/biostatistics/</u>

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Mini model	Viva voce	Total
8	8	10	8	8	8	50

Mapping

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	Μ	L	Н	L	L	М	Н
CO2	Μ	L	L	Μ	Μ	L	L	L	Н	М	М	М	Н
CO3	L	L	Μ	Μ	L	L	L	М	Н	М	М	М	Н
CO4	L	L	Μ	Μ	L	L	Μ	Н	Η	М	М	М	Н
CO5	Μ	Μ	L	L	L	Μ	Μ	М	Н	М	М	М	L

Course Designed by	Verified by HOD	Checked by	Approved by

M.Sc. Biotechnology

Course Code		Title			
21PGBTE301	Elective Paper – III (A) Food Biotechnology				
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks		

Course Objective:

To know about various staining process of biomolecules in tissues and its implications

Course Outcomes:

At the end of the course a student should be able to

CO1	Bring together the role of microorganisms in food spoilage and its analysis.
CO2	Know the process of food upholding through different techniques.
CO3	Classify food borne pathogens and microbial food processing.
CO4	Perform different hazardous analysis and their limitations.
CO5	Analyze the cleaning, processing and food safety standards

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	 Food Microbiology: Important genera of food borne microorganisms, factors affecting the growth and survival of microorganisms in food, Microbiological examination of food, Principles of food preservation Microbial spoilage of food: common food borne diseases, bacterial agents of food-borne illness, non-bacterial agents of food borne illness, Prevention and remedies. 	1	1,10 13-19
	Instructional Hours		12
п	SSF processes for Food Enzymes and their downstream processing: Amylases, Lipases, Proteases, Pectinases, L- Glutaminase, Inulinase, Tannase. Enzymes for production of protein hydrolysates and bioactive peptides, maltodextrins and corn syrup solids (liquefaction, saccharification, dextrinization, isomerization for production of high-fructose-corn-syrup), fructose and fructooligosaccharides	4	4
	Instructional Hours		12
ш	Germination- basic process and use for nutrients and nutraceutical production. Immobilization- Basics and applications in food processing Microencapsulation- Basics and applications in food processing.	2	22-28
	Instructional Hours		12
IV	Fermented food: Microorganisms in food fermentations, Bacteriocins and antimicrobial ingredients. Milk, fermented meat, fish products, oriental foods. Utilization of food waste for production of valuables.	3	9

	Enzymes as processing aids: Role of enzymes in cheese		
	making and whey processing; fruit juices (cell wall		
	degrading enzymes for liquefaction, clarification, peeling,		
	debittering, decolourization of very dark coloured juices		
	such as anthocyanases); baking (fungal α -amylase for		
	bread making; maltogenic α-amylases for anti-staling;		
	xylanses and pentosanases as dough conditioners; lipases		
	for dough conditioning.		
	Instructional Hours		12
	HACCP: Cleaning and disinfection, Code for good		
X 7	manufacturing practices, microbial and chemical safety of	2	11
v	food products, indicator organisms, ISO, hazard analysis	3	11
	and critical control points, sterility testing, CCP'S.		
	Instructional Hours		12
	Total Hours		60

- 1. James, M.J., Modern Food Microbiology, 6th Edition, CBS Publishers & Distributors, 2000.
- 2. James, M.J., **Modern Food Microbiology**, 7th Edition, CBS Publishers & Distributors, 2005.
- 3. Adams M.R. and Moss M.O., **Food Microbiology**, 2nd Edition, The Royal Society of Chemistry, 2005.
- 4. Avanthima **Sharma.**, **Textbook of Food science and Technology**, 3rd Edition, International Book distributing Company, 2019.

Unit I : Text Book 1, Chapter 1, Page No. 10: 1-4, Page No. 177-243; Chapter 13-19: Page No. 251-381

Unit II : Text Book 4, Chapter 4: Page No. 109-132.

Unit III: Text Book 2, Chapter 4: Page No. 22-28.

Unit IV: Text Book 3, Chapter 9: Page No. 311-369.

Unit V : Text Book 3, Chapter 11: Page No. 395-433

Reference Book(s):

- 1. Pederson, C. S., **Microbiology of Food Fermentations**, AVI Publishing Company, Westport, Connecticut, 1971.
- 2. Joshi V.K. and Ashok Pandey, **Biotechnology: Food Fermentation**, Educational Books Publications, 1999.
- 3. Pelczar, M.J., Chan E.C.S. and Krieg, N.R., **Microbiology**, McGraw-Hill, New York, 1988.
- 4. http://technology.tki.org.nz/Resources/Case-studies/Classroom-practice-casestudies/Food-and-biotechnology
- 5. https://www.foodinsight.org/education/food-biotechnology-communicators-guideimproving-understanding

CIA I	CIA II	CIA III	Seminar	Group discussion	Assignment	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	Μ	Μ	L	L	L	L	М	Μ	L	L
CO2	Μ	L	L	Μ	L	L	Μ	L	Н	М	Н	М	М
CO3	L	L	Μ	L	L	L	Н	Μ	Н	L	М	М	М
CO4	L	Μ	Μ	Μ	L	L	Н	L	М	Н	Н	М	М
CO5	L	L	L	Μ	L	L	Н	Μ	М	Н	Н	М	М

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code]	Fitle			
21PGBTE302	Elective Paper – III (B) Quality Control and Assurance				
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks		

To know about various staining process of biomolecules in tissues and its implications

Course Outcomes:

At the end of the course a student should be able

CO1	To acquire basic laboratory regulation and operation in quality declaration.
CO2	To improve a quality in laboratories by way of approved standards.
CO3	To assess level or degrees of quality in laboratory operation.
CO4	To assess level or degrees of quality by statistical methods.
CO5	To train good laboratory practices and laboratory management

Offered by: Biotechnology

Course Content

Course Con	l Hours /	Week: 4	
Unit	Description	Text Book	Chapter
Ι	Quality Assurance in the Laboratory I: History of Regulation and the Laboratory, An Overview of Key Parameters for Evaluating a Laboratory, Critical Laboratory Operations, Training in the Laboratory, Chemical Handling.	1	1-4
	Instructional Hours		12
II	Quality Assurance in the Laboratory II: Sample Control and LIM Systems, Laboratory Equipment Qualification, Equipment Calibration and Maintenance, Regulatory Standards.	1	6-8
		12	
Ш	An FDA Approach to Laboratory Inspections: FDA(Indian) Guide to Inspections of Pharmaceutical Quality Control Laboratories, FDA Guide to Inspections of Microbiological Quality Control Laboratories	1	1
		12	
IV	Quality Evaluation: Statistical Evaluation and Terminology, Graphical Analysis of Quality Control Results and Control Rules	2	2,3
	Instructional Hours		12
V	Good laboratory practices: Hazards, Types, Management of laboratory hazards and knowledge in First aid procedures. Handling hazardous wastes.	2	13
		12	
	Total Hours		60

- 1. Donald C. Singer, A Laboratory Quality Handbook of Best Practices, ASQ Quality Press, 2001.
- 2. Shubhangi Tambweker, **Handbook of Quality Assurance in Laboratory Medicine**, BI Publications Pvt. Ltd., 2009.
 - Unit I : Text Book 1, Chapter 1-4: Page No. 1-15.
 - Unit II: Text Book 1, Chapter 6-8: Page No. 39-216
 - Unit III: Text Book 1, Chapter 1: Page No. 299-336.
 - Unit IV: Text Book 2, Chapter 2, 3: Page No. 111-144.
 - Unit V: Text Book 2, Chapter 13: Page No. 156-162

Reference Book(s):

- 1. Rajesh Bhatia, **Quality Assurance in Microbiology**, CBS Publishers & Distributors, 2000.
- 2. http://www.appliedclinicaltrialsonline.com/quality-control-and-assurance-clinical-research
- 3. https://c.ymcdn.com/sites/www.ahdionline.org/resource/resmgr/WhitePapers/QA_Best _Practices.pdf

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Quiz	Assignment	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Μ	Μ	Μ	L	L	L	L	L	М	L	Μ
CO2	Μ	L	L	Μ	L	L	Μ	L	М	М	Н	М	Н
CO3	L	L	Μ	L	L	L	Н	Μ	Н	М	Н	М	Н
CO4	L	Μ	Μ	Μ	L	L	Н	L	Н	М	М	Н	Н
CO5	L	L	L	Μ	L	L	Н	Μ	Н	М	М	Н	Н

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code	Title					
21PGBTE303	Elective Paper – III (C) Bioinformatics and Molecular Biology Databases					
Semester: III	Semester: III Credits: 4		ESE: 50 Marks			

To understand mechanism of storage, retrieval and handling of biological data

Course Outcomes:

On successful completion of the course students will able to

CO1	Define different types of biological databases and data formats
CO2	Explain the nature of data handled by different databases
CO3	Make use of different search engines to retrieve data
CO4	Analyze the structure of macromolecules using visualization tools
CO5	Know about structure prediction tools

Offered by: Biotechnology

Course Content

Unit	Description	Text Book	Chapter
I	Introduction to Databases: Types of biological data, data formats, search engines, access to distributed data, integrated information retrieval systems: EnTrez, Sequence databases, NCBI and beyond, sequence submission tools.	3	2
	Instructional Hours		14
п	Relational databases for biological information: Types of databases, object-oriented databases, CORBA, Linux file systems and directories, PERL applications in Bioinformatics.	2	7,8
	Instructional Hours		12
III	Protein Databases: Protein Data Bank, file format of PDB, Secondary databases – SCOP, CATH. Protein Analysis Server – ExPaSy, Pattern Recognition databases.	1	5
	Instructional Hours		10
IV	Nucleic Acid Databases: NDB, GenSCAN, FGENESH, FLYBASE, OMIM, DDBJ, EMBL. RNA structure prediction tools – MFOLD.	1	3
	Instructional Hours		12
V	Structure Visualization Tools: Rasmol, Swiss PROT, Cn3D. Structure Prediction tools – i-TASSER, PhyMol.	2	16
	Instructional Hours		12
	Tota	al Hours	60
- 1. Andreas D. Baxevanis, B. F. Francis Ouellette., **Bioinformatics**, Wiley Publishers, 3rd Edition, 2011.
- 2. Rastogi, C. S., Namita Mendiratta., **Bioinformatics-Methods and Applications**, PHI Learning Pvt. Ltd., 4th Edition, 2013.
- 3. Harisha, S., **Fundamentals of Bioinformatics**, I. K. International Publishing House, 1st Edition, 2007.
 - Unit I: Text Book 3, Chapter 2, Page No. 14-55.
 - Unit II: Text Book 2, Chapter 7 and Chapter 8, Page No. 109-131
 - Unit III: Text Book 1, Chapter 5, Page No. 83-103.
 - Unit IV: Text Book 1, Chapter 3, Page No. 45-58.
 - Unit V: Text Book 2, Chapter 16, Page No. 248-285.

Reference Book(s):

- 1. Teresa Attwood., **Introduction to Bioinformatics**, Pearson Publications, 1st Edition, 2007.
- 2. David Mount., **Bioinformatics: Sequence and Genome Analysis,** Cold Spring Harbor Lab Press, 2nd Edition, 2004.
- 3. https://www.ncbi.nlm.nih.gov/books/NBK143764/
- 4. https://www.expasy.org/links
- 5. https://ww2.chemistry.gatech.edu/~lw26/course_Information/4581/labs/tbp/rasmol/rasmol_tbp_fset.html

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Group discussion	Seminar	Assignment	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	L	Μ	Μ	Μ	Μ	L	Н	Μ	М	L	L
CO2	L	L	L	Μ	Μ	L	L	L	Н	Н	М	L	L
CO3	Н	Μ	Μ	L	L	L	L	Μ	М	Н	Н	Н	L
CO4	Μ	L	L	Μ	L	L	Μ	Μ	М	Н	Н	М	М
CO5	L	Μ	L	Μ	L	L	L	L	М	Н	Н	Н	L

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code	Title					
21PGBTE401	Elective – IV (A) - Clinical Pathology and Diagnosis					
Semester: IV	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

This paper is introduced to impart advanced knowledge to the post graduate students in the field of Medical Biotechnology to carry out diagnostic experiments and to acquire requisite skills for the design and development of novel diagnostic methodology.

Course Outcomes:

On successful completion of the course students will able to

CO1	Understand the basics of medical science and the molecular concepts of						
COI	pathogenesis.						
CO2	Apply their knowledge in clinical diagnosis						
CO3	Acquire the knowledge of modern trends in medical biotechnology.						
CO4	Identify the mode of diagnostic tests and kit development						
CO5	Know about biotechniques in clinical medicine						

Offered by: Biotechnology

Course Content

Instructional Hours / Week: 4

Unit	Description	Text Book	Chapter
	Disorders of Kidney: Acute renal failure, chronic renal failure, proteinuria and nephriticsyndrome and urinary calculi.	1	1
Ι	 Disorders of Liver: Liver diseases acute hepatitis, Chronic hepatitis, acute liver failure, cirrhosis, alcohol and liver. Disorders of Brain and Neurons. Diseases of Heart -Myocardial infarction, Heart failure and Hypertension. 	2	8, 9
	Instructional Hours		12
II	 Disorders of Hypothalamus and Pituitary: Disorders of anterior pituitary hormones: Hypopituitarism Anorexia nervosa, Growth hormone deficiency, Growth hormone excess: acromegaly and gigantism. Disorders of poster pituitary hormones: Vasopressin and Diabetes incipidus. Disorders of Adrenal glands: Disorders of Adrenal cortex: Adrenal hypo function (Addison's disease). Adrenal hyperfunction: Cuushing'ssyndrome, Conn's syndrome congenital adrenal hyperplasiam (CAH), Disorders of adrenal medulla: catecholamine. 	2	11
	Disorders of Thyroid gland: Hyperthyroidism, hypothyroidism, thyroiditis, goiter and thyroid cancer. Disorder of Gonads: Disorders of male gonadal	2	12
	function: Delayed puberty and hypogonadismin females,	Δ	15

	Amenorrhea and oligomernorrhoea. Hirsutism and virillism and infertility		
	Instructional Hours		14
III	Inherited metabolic diseases: Glucose -6phosphatase deficiency, Galactisaemia, cystic fibrosis. Inherited abnormalities of bilirubin metabolism: Gilber's Crigler Naijer Dubin johnson jaundice and	2	21
	Rotor.	2	21
	Instructional Hours		12
IX	Infections of Bacteria and Parasites: Infectious diseases, host pathogen interactions. Toxins of Bacteria: serotoxins and Endo toxins.	2	19
IV	Parasites of biomedical importance : Malarial parasite, Filarial worm, <i>Trypanosome gambience</i> <i>andEntmoebahistolytica</i> .	2	23
	Instructional Hours		12
	An introduction to bio techniques in clinical medicine: Sampling, analysis, reporting and interpretation of results. Role of DNA analysis for prenatal diagnosis of metabolic diseases.	2	18
V	Drugs and the liver. Biotechnological approaches to liver diseases: Biochemical assessment of liver function. Molecular biological methods of diseases diagnosis. Diagnosis of viral infections. Diagnosis of fungal infections.	2	8,9
	Instructional Hours		10
	Total Hours		60

- 1. William J.Marashall, Clinical Chemistry, 5thedition, Mosby Publications, 2010.
- 2. Allen Gaw Robert A.Cowan, An Illustrated Color Text Book of Clinical Biochemistry, 2ndEdition, Churchill Living Stone Press, 2009.
 - Unit I : Text Book 1, 2Chapter 1, 8, 9, pages 10,88-89,98-102
 - Unit II : Text Book 2, Chapter 11, 12, pages 122-145,157-168
 - Unit III : Text Book 2, Chapter 21, pages 217-221
 - Unit IV : Text Book 2, Chapter 19,23, pages 196-210, 247-261
 - Unit V : Text Book 2, Chapter 8, 9, 18, pages 96-97, 103-115, 191-194

- 1. JanKoolman and Klaus Heinrich Roehm, Color Atals of Biochemistry, 2nd Edition, Thieme Publications, 2007.
- 2. Colleen M, Marks' Basic Medical Biochemistry: A Clinical Approach, 2ndedition, 2010.
- 3. Jawetz, Medical Microbiology, 2011.
- 4. http://www.ncbi.nlm.nih.gov/sites/entrez?=books(NCBI ?Book Shelf)
- 5. <u>http://web.instate,edu/theme/mwking /subjects.html</u> (e.book)
- 6. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mmed.TOC&depth=2(e-book)

- http:66.99.255.20/cms/biochem/medbiochem/medbiochem.htm
 http:home.net/~dbc/cic_hamilton/clinical.html

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Group discussion	Assignment	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	L	L	Μ	L	L	Μ	L
CO2	Μ	L	Μ	L	L	Μ	L	L	L	М	L	Н	М
CO3	L	L	Н	Μ	L	L	Μ	Μ	Μ	L	М	М	Н
CO4	М	L	Μ	L	L	Η	L	L	М	М	М	Η	Η
CO5	L	L	Μ	Μ	L	Н	Μ	L	Μ	М	М	Н	Н

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code	Title					
21PGBTE402	Elective Paper – IV (B) Occupational Health & Industrial Safety					
Semester: IV	Credits: 4	CIA: 50 Marks	ESE: 50 Marks			

To impart knowledge on various occupational health hazards and also safety measures to be taken in the work place.

Course Outcomes:

On successful completion of the course students will able to

CO1	get an idea about the advantages and disadvantages of health and safety
CO2	Know about occupational & Industrial safety applications, principles & functions in
	safety management.
CO3	Knowledge on occupational diseases.
CO4	Exposure on work design for suitable environment.
CO5	Analyze the principles and Management.

Offered by: Biotechnology

Course Content

Instructional Hours / Week: 4

Unit	Description	Text Book	Chapter
	Introduction of Occupational Health and Safety. Factors affecting the conditions of occupational and Industrial safety. Parameters of safety.	1	1
Ι	Concept of safety organization and Management - Safety Regulations.	1	4
	Definition and Role of Ergonomics in Designing Work- Place.	1	4
	Instructional Hours		13
	Work Environment - Effects of Light, Ventilation, Vibration, Noise etc.	1	1
11	The Work Physiology and their Relevance to Safety.	1	2
	Performance Evaluation of Man - Environment systems.	1	6
	Instructional Hours		12
	Occupational Health and Safety – Occupational Health and		
	Hazards – Physical, Chemical and Biological hazards.		
III	Occupational Diseases and their Prevention and Control.	2	3
	Health Protection Measures for Workers.	$\frac{2}{2}$	30
	Principles of Arthropod Control.	2	37
	Instructional Hours		13
	Health Education Medical First-Aid and Management of	2	7
	Medical Emergencies.		
	Industrial Safety management Techniques - Industrial Safety		
IV	Standards. Accidents-Definition, Frequency Rate,	2	8
	Prevention and Control.	-	Ũ
	Work Study - Method of Study and Measurement.		
	Measurement of Skills. Safety - Cost of Expenses.		
	Instructional Hours		12

	Total Hours					
Instructional Hours						
v	Preparation of report on safety measures followed in Airport/Industry.	2	11			
X 7	Principles of Functions in Safety Management Case Study. Visit to an Industry.	2	8			

- 1. WHO, Occupational Health, **A Manual for Primary Health Care Workers**, WHO-EM/OCH/85/E/L distribution Ltd., 2009.
- 2. Industrial Safety, Health and Environment Management Systems, R.K. Jain, Khanna Publishers, 2010.
 - Unit I:Text Book 1, Chapter 1, 4Unit II:Text Book 1, Chapter 1, 2, 6Unit III:Text Book 2, Chapter 3, 39Unit IV:Text Book 2, Chapter 7, 8Unit V:Text Book 2, Chapter 8, 11

Reference Book(s):

- 1. Kolluru R. V., Environmental Strategies–Hand Book, McGraw Hill Inc., New York, 2013.
- 2. Walsh, W and Russell, L., **ABC of Industrial Safety**, PitmaPublishing, United Kingdom, 2005.
- 3. Hommadi, A. H., Environmental and Industrial Safety, I.B.B Publication, New Delhi, 2008.
- 4. https://www.crcpress.com > Occupational Health & Safety

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Seminar	Group discussion	Assignment	Total
8	8	10	8	8	8	50

	Mapping												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	L	Н	Μ	L	Μ	Μ	L	М	L	Н	L	L
CO2	Μ	L	L	Μ	Μ	L	L	L	L	М	Н	L	L
CO3	L	L	Μ	Μ	L	L	L	Μ	L	L	Н	Н	М
CO4	L	L	Μ	Μ	L	L	Μ	Н	Μ	Н	М	Μ	Μ
CO5	Μ	Μ	L	L	L	Μ	Μ	Μ	М	Н	М	М	М

Course Designed by	Verified by HoD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title								
21PGBTE403	Elective Paper – IV (C) Drug Des	Elective Paper – IV (C) Drug Designing and Molecular Modeling							
Semester: IV	Credits: 4	CIA: 50 Marks	ESE: 50 Marks						

Course Objective:

To understand drug structures and its interactions, dosage effects and designing procedures

Course Outcomes:

On successful completion of the course students will able to

CO1	Tell drug absorption mechanism and administration methods
CO2	Outline receptor interactions with target and metabolism of drug
CO3	Develop drug discovery protocols
CO4	Analyze structure-activity relationship of drugs
CO5	Explore about types of descriptors

Offered by: Biotechnology

Course Content

Instructional Hours / Week: 4

Unit	Description	Text Book	Chapter
I	Classification of drugs: Routes of drug administration. Absorption & Distribution of drugs. Role of kidney in drug interaction with biomolecules. Binding of drugs to plasma proteins.	1	1
	Instructional Hours		10
п	Drug receptors: Drug-receptor interaction, Drug action not mediated by receptors. Structural based drug design, mechanism of their action. Lipinski's rule of 5, Clinical trials 1-4 phases.	1	3
	Instructional Hours		12
III	Effect of drug doses on the rate of metabolism: Mechanisms and importance of Phase I and Phase II biotransformation. Role of cytochrome p450. Enzyme inhibition strategies, enzyme induction and pharmacological activity, LD50 and IC50.	1	4
	Instructional Hours		14
IV	Drug design: Drug discovery process. Target identification and validation, lead optimization and validation. Pharmacophores (3D database searching, conformation searches, deriving and using 3D Pharmacophore.	2	10
	Instructional Hours		10
V	QSAR: Quantitative Structure Activity Relationship (QSAR). Types of descriptors-constitutional, topological, charge, quantum chemical, walk and path counts, geometric descriptors. Types of QSAR methods-In static contour plot, in electro static contour plots, 3DQSAR.	2	12

Instructional Hours	14
Total Hours	60

- 1. Singh. H and Kapoor, V.K., **Organic Pharmaceutical Chemistry**. Vallabh Prakashan Publishers. New Delhi, 6th Edition, 2016.
- 2. Andrew Leach R., Molecular Modeling: Principles and Application. Harlow, 2nd Edition, 2010.
 - Unit I: Text Book 1, Chapter 1, Page No. 1-30.
 - Unit II: Text Book 1, Chapter 3, Page No. 33-47.
 - Unit III: Text Book 1, Chapter 4, Page No. 51-66.
 - Unit IV: Text Book 2, Chapter 10, Page No. 509-549.
 - Unit V: Text Book 2, Chapter 12, Page No. 640-719.

Reference Book(s):

- 1. Alan Hinchliffe., **Molecular Modelling for Beginners**, John Wiley & Sons Ltd. 2nd Edition, 2013.
- 2. Tamar Schlick., Molecular Modeling and Simulation An interdisciplinary Guide, Springer Verlag, 2nd Edition, 2010.
- 3. Patrick Bultinck., **Computational Medicinal Chemistry for Drug Discovery**, Marcel Dekker Inc., 1st Edition, 2004.
- 3. https://www.omicsonline.org/drug-discovery-jaa.1000025.pdf
- 4. https://www.biophys.mpg.de/fileadmin/user_upload/pics_tb/Lecture-2-QSAR.pdf

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Group discussion	Assignment	Seminar	Total
8	8	10	8	8	8	50

Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	L	Μ	Μ	Μ	Μ	L	М	Н	Μ	L	L
CO2	L	L	L	Μ	Μ	L	L	L	Н	Н	Н	М	L
CO3	Η	Μ	Μ	L	L	L	L	Μ	Н	Н	Н	Н	М
CO4	Μ	L	L	Μ	L	L	Μ	Μ	М	Η	Η	М	М
CO5	L	Μ	L	Μ	L	L	L	L	Н	Н	Н	М	L

Course Designed by	Verified by HoD	Checked by	Approved by		

Course Code	Title		
21PGBTSS01	Advanced Leaner Course - I Cell Communication and Cell Signaling		
Semester: I – IV	Credits: 2	CIA:	ESE: 100 Marks

To understand various inter and intra cellular communications, cell signaling molecules and its significations.

Course Outcomes:

On the successful completion of the course the students will know

CO1	Cell receptors
CO2	Cell signaling molecules
CO3	Signal inductions between and within cells
CO4	Maintenance of these processes for homeostasis
CO5	Aberration and its implications for diagnosis

Offered by: Biotechnology

Course Content

Instructional Hours / Week: -

Unit	Description	Text Book	Chapter
Ι	Introduction : Types of cell signaling-inter and intra signaling molecules.	1	41
	Instructional Hours		
	Host-parasite interaction: Recognition and entry processes of different pathogens like bacteria, viruses into animal and plant host cells, virus-induced cell transformation	2,3	13,13
11	Alteration of host cell behavior by pathogens,	2,3	13,13
	Pathogen-induced diseases in animals and plants,	2,3	13,13
	Cell-cell fusion in both normal and abnormal cells.	2,3	13,13
	Instructional Hours		
ш	Cell signaling: Categories of cell signaling, Animal and plant hormones, Hormones and their receptors, cell surface receptor, signalling through G-protein receptors, signal transduction pathways.	2,3	13,13
	cAMP, cGMP, calcium ion flux and its role in cell signaling, second messengers including lipid derived second messengers, regulation of signaling pathways.	2,3	13,13
	Bacterial and plant two-component signalling systems, bacterial chemotaxis, and quorum sensing.	2,3	13,13
	Instructional Hours		
IV	Types of receptors –Internal receptors, Cell surface receptors, ion channel linked receptors, G protein coupled receptors, Enzyme linked receptors.	2,3	13,13

	Instructional Hours	
V	Cellular communication: Types of cellular communication, Regulation of hematopoiesis, general principles of cell communication, Cell adhesion and roles of different adhesion 2, 3 molecules, gap junctions, extracellular matrix, integrins, neurotransmission and its regulation.	13,13
	Instructional Hours	
	Total Hours	

- 1. Robert K. Murray, Darryl K. Granner, Peter A. Mayes, Victor W. Rodwell, Harper's Illustrated Biochemistr Published by McGraw-Hill Professional, 26th edition.
- **2.** Carl Branden and John Tooze, **Introduction to Protein structure**, Garland publishers, NY, 2nd edition.
- 3. Alberts et al., Molecular Biology of the Cell 6thedition, Garland Science

Unit 1 : Book 1: Pages 415- 456 Unit 2-4: Book 2: Pages 251-279

Unit 1-5: Book 3: Pages 813-888

- 1. https://www.youtube.com/watch?v=qOVkedxDqQo
- 2. https://www.youtube.com/watch?v=qOTsa5xDd88
- 3. https://www.youtube.com/watch?v=FQFBygnIONU
- 4. https://www.youtube.com/watch?v=zGNrF7EXBd0
- 5. https://www.youtube.com/watch?v=XOukpgUMOGY
- 6. https://www.golifescience.com/cells-of-immune-system/
- 7. https://nptel.ac.in/courses/102103012/29
- 8. https://mcb.berkeley.edu/courses/mcb110spring/nogales/mcb110_s2008_4signaling.p df
- 9. https://www.youtube.com/watch?v=XuM0YBL-bCA
- 10. https://www.thebiomics.com/notes/cell-communication-cell-signaling
- 11. https://openoregon.pressbooks.pub/mhccmajorsbio/chapter/types-of-receptors/
- 12. https://www.youtube.com/watch?v=-dbRterutHY&vl=en

Course Designed by	Verified by HoD	Checked by	Approved by		

Course Code	Title		
21PGBTSS02	Advanced Leaner Course – I	II Diversity	of Life Forms
Semester: I to IV	Credits: 2	CIA :	ESE: 100 Marks

The course will look at the origins of life, its diversity, and the way that the environment has shaped the evolution of organisms over geological time.

Course Outcomes:

At the end of the course a student should be able to

CO1	Appreciate the origin of diversity of life, covering the three domains and classification of Eukaryotic groups.
CO2	Have a knowledge of the terminology used to describe species' form and function
CO3	Appreciate why certain species are studied and research methodologies used
CO4	Understand of the sequence of the development of life on earth
CO5	Know about importance of agriculture.

Offered by: Biotechnology

Course Content

Instructional Hours / Week: --

Unit	Description	Text Book	Chapter
I	Principles & methods of taxonomy: Concepts of species and hierarchical taxa, biological nomenclature, classical & quantitative methods of taxonomy of plants, animals and microorganisms.	1	1
	Instructional Hours		
II	Levels of structural organization: Unicellular, colonial and multicellular forms. Levels of organization of tissues, organs & systems. Comparative anatomy, adaptive radiation, adaptive modifications.	1	4
	Instructional Hours		
III	Outline classification of plants, animals & microorganisms: Important criteria used for classification in each taxon. Classification of plants, animals and microorganisms. Evolutionary relationships among taxa.	1	6
	Instructional Hours		
IV	Natural history of Indian subcontinent: Major habitat types of the subcontinent, geographic origins and migrations of species. Common Indian mammals, birds. Seasonality and phenology of the subcontinent.	1	8
	Instructional Hours		
V	Organisms of health & agricultural importance: Common parasites and pathogens of humans, domestic animals and crops.Organisms of conservation concern: Rare, endangered species. Conservation strategies.	2	7
	Instructional Hours		
	Tot	tal Hours	

1. Raven Johnson, **Biology**, Campbell Biology, McGraw-Hill Education, 6th Edition, 2005.

NASC

2021

- 2. Kato, M., The Biology of Biodiversity, Springer Japan, 1st Edition, 2000.
 - Unit I : Text Book 1, Chapter 1: 1-18.
 - Unit II: Text Book 1, Chapter 4: 58-73.
 - Unit III: Text Book 1, Chapter 6: 421-476.
 - Unit IV: Text Book 1, Chapter 8: 569-610.
 - Unit V: Text Book 2, Chapter 7: 625-646.

- 1. Edward O.Wilson, **The Diversity of Life**, illustrated, reprint, reissue, W. W. Norton, 1999.
- 2. 1.http://www.nrm.se/download/18.33b738b8117bcb5a90c800011827/1367705565892 /Diversity+of+Life.pdf
- 3. https://www.thebiomics.com/notes/diversity-life-forms

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code	Title		
21PGBTSS03	Advanced Leaner Course – III Ecological Principles		
I to IV	Credits: 2	CIA:	ESE: 100 Marks

On successful completion of the subject the student should have understood ecology, compare their purposes with that of ecology

Course Outcomes:

On successful completion of the course the student will able to

CO1	Understand the importance of environmental deterioration in different ecosystems;
	to define ecology and the related levels of biological organization.
CO2	Explain benefits of selective breeding and propagation
CO3	Describe both biotic and abiotic limiting factors of ecosystems
CO4	Apply their knowledge of general environmental science to improve the quality of
CO4	life in individual context and as citizens in a global village.
CO5	Know about Geography

Offered by: Biotechnology

Course Content

Instructional Hours / Week: --

Unit	Description	Text Book	Chapter
I	The Environment: Physical environment; biotic environment; biotic and abiotic interactions.Habitat and Niche: Concept of habitat and niche; niche width and overlap; fundamental and realized niche; resource partitioning; character displacement.	1	1-2
	Instructional Hours		
II	 Population Ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (r and K selection); concept of metapopulation – demes and dispersal, interdemic extinctions, age structured populations. Species Interactions: Types of interactions, interspecific competition, herbivory, carnivory, pollination, symbiosis. 	1	2-3
	Instructional Hours		
III	Community Ecology : Nature of communities; community structure and attributes; levels of species diversity and its measurement; edges and ecotones. Ecological Succession: Types; mechanisms; changes involved in succession; concept of climax. Production of native and recombinant proteins in bacteria and yeast – vaccine production in	1,2	3-5
	Instructional Hours		

IV	Ecosystem Ecology : Ecosystem structure; ecosystem function; energy flow and mineral cycling (C,N,P); primary production and decomposition; structure and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, eustarine)	1,2	6-8
	Instructional Hours		
V	Biogeography : Major terrestrial biomes; theory of island biogeography; biogeographical zones of India.	2	9,10
	Instructional Hours		
	Total Hours		

- 1. Peter J. Jarvis, **Ecological Principles and Environmental Issues**, Pearson education, Edition illustrated, Prentice Hall, 2000.
- 2. 2.N. S. Subrahmanyam, A. V. S. S. Sambamurty, **Ecology**, Alpha Science International, Edition 2, 2006.
 - Unit I : Text Book 1, Chapter 1-2: 5-20.
 - Unit II: Text Book 1, Chapter 2-3: 25-40; Text Book 2, Chapter 3-5: 24-97.
 - Unit III: Text Book 1,2 Chapter, 3-5: 61-72, 65-82.
 - Unit IV: Text Book 1, 2 Chapter 6-8: 90-122, 103-132.
 - Unit V : Text Book 2, Chapter 9-10: 143-172.

- 1. Michael Begon, Colin R. Townsend, John L. Harper, Ecology-From Individuals to Ecosystems, Wiley-Blackwell 2009.
- 2. David B Lindenmayer, Gene E Likens, **Effective Ecological Monitoring**, CSIRO Publishing (2010).
- 3. Davide Geneletti, Handbook on Biodiversity and Ecosystem Services in Impact Assessment, Edward Elgar Publishing (2016).
- 4. https://www.barnesandnoble.com/w/treat-climate-change-save-the-earth-amanda-rothman/1123539104?ean=2940153101897.

Course Designed by	Verified by HoD	Checked by	Approved by

M.Sc. Biotechnology

Course Code	Title			
21PGBTSS04	Advanced Leaner Cou	rse - IV Applied	Biology	
I to IV	Credits: 2	CIA:	ESE: 100 Marks	

Course Objective:

Applied Biology is a discipline that is currently at the forefront of scientific research and technological development and underpins a number of premier industries.

Course Outcomes:

At the end of the course a student should be able to

CO1	Explain how biological knowledge is obtained by curiosity and creativity.			
CO2	Understand biological concepts and experimental information in a professional			
002	manner.			
002	Collect and analyse information that is relevant to understanding biological			
005	phenomena			
CO4	Explore the design of simple field or laboratory based biological experiments.			
CO5	Know about Biosensors.			

Offered by: Biotechnology

Course Content

Instructional Hours / Week: --

Unit	Description	Text Book	Chapter
т	Microbial fermentation and production of small and	1	1-5
1	macro molecules.		
	Instructional Hours		
	Application of immunological principles, vaccines,	2	1-6
II	diagnostics. Tissue and cell culture methods for plants		
	and animals.		
	Instructional Hours		
ш	Genomics and its application to health and agriculture,	2	7-9
111	including gene therapy.		
	Instructional Hours		
137	Breeding in plants and animals, including marker –	3	1-4
1 V	assisted selection		
	Instructional Hours		
V	Bioremediation and phytoremediation. Biosensors	1	9
	Instructional Hours		

Text Book(s):

- 1. El-Mansi, E.M.T., Bryce, C.F.A., Dahhou, B., Sanchez, S., and A.R. Alman. **Fermentation microbiology and Biotechnology**, Taylor and Francis, 2012.
- 2. Seema J. Patel, Plant and Animal tissue culture, Laxmi Book Publication, 2016.
- 3. Louisiana, Transgenic Animals and Plants Use Vectors to Improve Production and Disease Resistance, LSU Ag Center, 2010.
 - Unit I : Text Book 1, Chapter 1-5: 5-50.
 - Unit II: Text Book 2, Chapter 1-6: 4-65.
 - Unit III: Text Book 2, Chapter 7-9: 66- 92.
 - Unit IV: Text Book 3, Chapter 1-4: 3-52.

Unit V: Text Book 1, Chapter 9: 73-92.

Reference Book(s):

1. John I Spicer, **Biodiversity**, The Rosen Publishing Group, 2009.

2. Vaidyanath, K., Applied Biology and Biotechnology, B.S Publication, 2004.

Course Designed by	Verified by HoD	Checked by	Approved by

Course Code	Title			
21PGBTSS05	Advanced Leaner Course – V Hist Technic	tochemical an ques	d Immunological	
I to IV	Credits: 2	CIA:	ESE: 100 Marks	

This course bequeath with an introduction to quality control with an emphasis on good laboratory practices

Course Outcomes:

At the end of the course a student should be able to

CO1	Know the methods of bruising over cell or tissue for characterization.
CO2	Improve a scientific knowledge on tools used in histology.
CO3	Classify and state biochemical analysis of blood.
CO4	Learn the purpose of RIA in hormonal analysis.
CO5	Know about applications of histochemical.

Offered by: Biotechnology

Course Content

Instructional Hours / Week: --

Unit	Description	Text Book	Chapter
Ι	Cell and Tissue Staining Techniques: Elements of microtomy- pre-microtomy processes, microtomy process, post microtomy process. In situ and histological staining techniques- Whole mount (In situ) staining techniques, microbial staining techniques. Histochemistry- General histochemistry, enzyme histochemistry, Immunochemistry.	1	5-10
	Instructional Hours		
II	Microscopy &other methods: Light microscopy, electron microscopy, three dimensional microscopy, camera lucida. centrifugation, spectroscopy, chromatography, electrophoresis.	1 2	28-30 3-5
	Instructional Hours		
ш	Blood: composition, hematological techniques: Detection of carbohydrates and lipids- chemistry and classification, qualitative and quantitative detection. Detection of enzymes- Chemistry and classification, qualitative and quantitative detection.	1	11-13, 20
	Instructional Hours		
IV	Nucleic acid biotechniques: Salient features, laboratory biotechniques. Immunological techniques- Elements of immunology, immune reaction, immunological techniques.	1	13, 21
	Instructional Hours		
V	Radioimmunoassay of hormones: Principle of radioimmunoassay, chemistry and classification of	1	22

hormones, hormones.	radioimmunoassay	(RIA)	techniques	for	
		Inst	ructional Ho	ours	
			Total Ho	ours	

- 1. Bancroft. J. D. and M. Gamble., **Theory and Practice of Histological Techniques**, Elsevier Publishers, 6th Edition, 2008.
- 2. Barbara J. Bain, Imelda Bates, Sir John Vivian Dacie., Dacie& Lewis, **Practical Haematology**, Elsevier Publishers, 11th Edition, 2011.
 - Unit I : Text Book 1, Chapter 5-10: 75-160.
 - Unit II : Text Book 1, Chapter 28-30: 575-640; Text Book 2, Chapter 3-5: 24-

97.

- Unit III: Text Book 1, Chapter 11-13, 20: 161-232, 405-432.
- Unit IV: Text Book 1, Chapter 13, 21: 217-232, 433-472.
- Unit V : Text Book 1, Chapter 22: 473-492.

- 1. Bancroft, J. D. and Harry Charles Cook., Manual of Histological Techniques and Their Diagnostic Application, Churchill Livingstone Inc, New York, 1994.
- 2. http://shodhganga.inflibnet.ac.in/bitstream/10603/95455/13/13_chapter%206.pdf
- 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1942863/
- 4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1424002/

Course Designed by	Verified by HoD	Checked by	Approved by