

NEHRU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution affiliated to Bharathiar University) (Reaccredited with "A" Grade by NAAC, ISO 9001:2015 & 14001:2004 Certified Recognized by UGC with 2(f) &12(B), Under Star College Scheme by DBT, Govt. of India) Nehru Gardens, Thirumalayampalayam, Coimbatore - 641 105, Tamil Nadu.

M. Sc. MICROBIOLOGY SCHEME OF EXAMINATION (Applicable to the students admitted during the academic year 2021–2022 onwards)

					Exa	amina	tions	
Se mes ter	Course Code	Name of the Course	Ins. Hrs/ week	Dur ./ Hrs	CI A	ES E	Tot al Ma rks	Credit
	21PGMBC101	Paper I – Basics of Microbiology and General Bacteriology	5	3	50	50	100	4
	21PGMBC102	Paper II – Microbial Physiology and Biochemistry	5	3	50	50	100	4
Ι	21PGMBC103	Paper III – Analytical Methods in Microbiology	5	3	50	50	100	4
1	21PGMBC104	Paper IV – Virology and Mycology	5	3	50	50	100	4
	21PGMBE 101 21PGMBE 102 21PGMBE 103	Elective Paper – I	5	3	50	50	100	4
	21PGMBQ101	Practical I – Lab in General and Analytical Microbiology	5	9	50	50	100	4
		Sub Total	30				600	24
	21PGMBC205	Paper V – Microbial Genetics and Molecular Biology	5	3	50	50	100	4
	21PGMBC206	Paper VI – Immunology	5	3	50	50	100	4
	21PGMBC207	Paper VII – Computational Biology, Microbial Genomics and Proteomics	5	3	50	50	100	4
П	21PGMBC208	Paper VIII – Bioprocess Technology	5	3	50	50	100	4
	21PGMBE201 21PGMBE202 21PGMBE203	Elective Paper – II	5	3	50	50	100	4
	21PGMBQ202	Practical II – Lab in Molecular Biology and Immunology	5	9	50	50	100	4
		Sub Total	30				600	24
	21PGMBC309	Paper IX–Environmental and Agricultural Microbiology	5	3	50	50	100	4
	21PGMBC310	Paper X – Microbial Biotechnology and IPR	5	3	50	50	100	4
Ш	21PGMBC311	Paper XI – Biostatistics and Research Methodology	5	3	50	50	100	4
111	21PGMBC312	Paper XII – Microbial Food Technology	5	3	50	50	100	4
	21PGMBE301 21PGMBE302 21PGMBE303	Elective Paper – III	5	3	50	50	100	4
	21PGMBONL C	Online Course through SWAYAM**	-	-	-	-	100	4

		actical III – Lab in Environment, griculture and Food Microbiology		5	9	50	50	100	4
	21PGMBT301 *Inte	ernship Training	-		-	-	-	50	2
		Sub Total	30					750	30
	21PGMBC413 Paper	er XIII – Medical Microbiology	5		3	50	50	100	4
IV	21PGMBV401 **Pro	roject and viva voce*	20		-	100	100	200	8
	71 PC TNIKO202	tical IV – Lab in Medical robiology	5	9)	50	50	100	4
			30					400	16
	Total			2350	94				

LIST OF ELECTIVE PAPERS:

Elective Papers	Course code	Group	Name of the Course
	21PGMBE101	Α	Principles of Quality Assurance in Food
Elective Paper I/ Sem. I	21PGMBE102	В	Diagnostic Mycology
	21PGMBE103	С	Fundamentals of Plant tissue Culture
	21PGMBE201	Α	Principles of Quality Assurance in Pharmaceuticals
Elective Paper II/Sem. II	21PGMBE202	В	Techniques in Parasitology
	21PGMBE203	С	Fundamentals of Animal tissue Culture
	21PGMBE301	Α	Total Quality Management (TQM)
Elective Paper III/Sem. III	21PGMBE302	В	Clinical Data Base Management
	21PGMBE303	С	Techniques in Plant and Animal Tissue Culture

Part	Courses	Semesters	Credit/Points	Marks/Grade
III	Components Core / Elective Papers/ Online course	I to IV	86	2050
III	Research Project	IV	8	200
	Total		94	2250
Optional	i) Advanced Learners Course (ALC) – self study	I - IV	Extra credit – 8 (2 / Paper / Sem.)	@ 400

@- NOT INCLUDED IN TOTAL MARKS & CGPA CALCULATION

List of Advanced Learners Course (Self Study)

S. No.	Course Code	Name of the Course
1	21PMBSS01	Cellular Organization
2	21PMBSS02	Cell Communication and Cell Signalling
3	21PMBSS03	Developmental Biology
4	21PMBSS04	Inheritance Biology
5	21PMBSS05	Evolution and Behaviour

<u>Ouestion Paper Pattern - Advanced Learners Course</u>

Time:3 Ho	urs			Max Marks:100
Knowle	edge Level	Section	Marks	Description
K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define
K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed

* Internship Training:

Industrial Training has to be undergone during II semester vacation period (15 days). Mark shall be given based on training report and presentation.

*Research Project and Viva-Voce Guidelines

- 1) Project is pertain to the field of Microbiology
- 2) Two review meetings should be conducted at regular intervals in the presence of HoD and respective guide. The review should evaluate for a maximum of 50 marks.

Review	Maximum Marks
Ι	50
II	50

Dissertation evaluation	60 Marks
Viva-Voce	40 Marks

Chairman Board of Studies in Microbiology Nehru Arts and Science College Coimbatore

SYLLABUS

SEMESTER – I

Course Code	Title				
21PGMBC101	Paper I – Basics of Microbiology and General Bacteriology				
Semester : I	Credits : 4	CIA: 50 Marks	ESE : 50Marks		

Course Objective:

To provide the student with basic knowledge of microorganisms and describe the general properties & characteristics of bacteria.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Understand the development of microbiology.
CO2	Acquaintance on study of microbial diversity using different methods and systematics of bacteria.
CO3	Identify unique structures, capabilities and functions of microorganisms.
CO4	Discuss reproduction and life cycle of Bacteria.
CO5	Familiarize how to control microorganisms.

Offered by: Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
I	Historical Development: Contributions of Leeuwenhoek, Louis Pasteur, Robert Koch, Edward Jenner, Joseph Lister, Winogradsky, John Tyndal. History and Scope of Microbiology. Spontaneous generation conflict – Germ Theory of disease.	1	1
	Instructional	Hours	10
Ш	Microbial Taxonomy: Domains and Kingdom of life – Bacterial Nomenclature – Various criteria used in bacterial classification: Morphological, physiological, metabolic, serological, ecological and genetic analysis. Outline of Bergey's Manual of systematic bacteriology – Numerical taxonomy – 16S rRNA based classification.	2	2
	Instructiona	Hours	15
ш	Morphology and Fine Structures: Overview of bacterial cell structure (size, shape, arrangement of membrane and cellwall), cytoplasmic inclusions, mesosomes, flagella and motility, slime, capsule, pili,chemotaxis and endospore. Bacterial chromosome, nucleoid, plasmid (types andfunction).Staining -Gram, Negative, Capsule, Spore, Flagellar, Nuclear, Acid fast.	2	4
	Instructiona	Hours	18
IV	Reproduction and Growth: Binary fission, Budding, Fragmentation, Microbial growth and life cycle of bacteria. Population growth and its measurement, effect of environmental conditions on growth (pH, temperature, aeration).Continuous and batch culture, diauxic synchronous growth cultures and anaerobic cultures.	1	5, 6
	Instructiona	Hours	17

V	Control of growth of Microbes: Sterilization, disinfection, antiseptic, sanitizer, germicide, antimicrobial agent, physical methods of sterilization- dry-heat, moist-heat, filtration, radiation, chemical controls- dye alcohols, alkali, halogen, heavy metals, formaldehyde, phenols its derivatives, ethylene oxide, detergents.		7
	Instructional	Hours	15
	Total	Hours	75

- 1. Prescott, Harley, and Klein's, Microbiology, 7th Edition, McGraw Hill Education, 2008.
- 2. Dubey R.C., A Text Book of Microbiology, S. Chand & Company Ltd., 2013.
- 3. Jeffrey C. Pommerville, **Fundamentals of Microbiology**, 10th Edition, Jones&Barlett, 2014.

Unit I	:	Text Book 1, Chapter 1: 1-16.
Unit II	:	Text Book 2, Chapter 2: 26-58.
Unit III	:	Text Book 2, Chapter 4: 79-125.
Unit IV	:	Text Book 1, Chapter 5, 6: 101-142.
Unit V	:	Text Book 3, Chapter 7:195-221.

Reference Book(s):

- 1. Alcamo, E. Fundamentals of Microbiology, 6th Edition. Jones and Bartlett Publishers,New Delhi. 2001
- **2.** Brooks, G.F., E. Jawetz, J.L. Melnick and E.A. Adelberg. **Medical Microbiology.** 26thEdition, New York: McGraw Hill Medical. 2013.
- 3. Patricia, M.T. Bailey and Scott's **Diagnostic Microbiology**,13th Edition, Mosby, Inc. Publishers, China. 2014.
- 4. https://microbiologyinfo.com/

Tools for Assessm	ent (50 Marks)
-------------------	----------------

Γ	CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total	
	8	8	10	8	8	8	50	

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Н	М	Н	Н	Н	Н	Н	М	Н	М
CO2	Н	Н	М	Н	М	Н	М	Н	Н	М	М	М	Н
CO3	Н	Н	М	Н	Н	М	М	Н	М	Н	Н	М	Н
CO4	Η	Η	М	L	М	М	М	Н	Н	Н	Н	М	Н
CO5	Η	Η	L	М	Η	Η	М	Н	Н	Н	М	М	М

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
Dine	Chum 1 2.93/10	Navy.	AS
	Dim. MAN anus	DT Convenceroraguki	3 T MAR 202

Course Code		Title							
21PGMBC102	Paper II -	Paper II - Microbial Physiology and Biochemistry							
Semester : I	Credits : 4	CIA : 50 Marks	ESE : 50 Marks						

Course Objective:

This course provide the students with basics aspects of microbial physiology, important metabolic process and survival mechanisms.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Understand the concept of nutrition metabolism, transport mechanism across bacterial cells.
CO2	Describe the properties of amino acids, proteins and enzymes.
CO3	Know various types of bacteria involved in photosynthesis and its mechanisms.
CO4	Explain the mechanisms of lipid and its connected metabolism.
CO5	Develop knowledge on bacterial reserve food material and its role.

Offered by : Department of Microbiology

Course Content

Instructional Hours/Week: 5

Unit	Description	Text Book	Chapter
I	Nutrition and Metabolism: Concepts and nutritional categories. Transport of nutrients(diffusion, active transport, group translocation). Introduction to oxidative and substrate level phosphorylations, brief account of metabolism of carbohydrates, EMP,ED, TCA and glyoxylate cycles.	1	3-5
	Instruction	nal Hours	15
п	Amino acids and Enzymes : C, chemical reaction, physical properties, primary, secondary, tertiary and quaternary structure of enzyme, inhibition, mechanism of action. Enzyme kinetics, allosteric enzymes and its kinetic analysis and regulation.	3	9, 16-18
	Instruction	nal Hours	15
ш	Bacterial photosynthesis: Type of photosynthesizing bacteria and their characteristic features, photosynthetic pigments, metabolism in photosynthetic bacteria, photosynthetic electron transport system; Dark reaction (Calvin Benson cycle),chemolithotrophy (energy from oxidation of inorganic electron donors), Hydrogen oxidizing bacteria, sulfur bacteria, Iron oxidizing bacteria, Ammonium and Nitrate oxidizing bacteria	2	12
	Instruction	nal Hours	15
IV	Fat and phospholipid hydrolysis: Hydrocarbon transformation (Aliphatic/ Aromatic)Nitrogen fixation; Nitrogenase physiology and genetics, physiological difference in nitrogen fixing cells, free living, symbiotic and associative symbiotic organisms.	3	13, 14
	Instruction	nal Hours	15

V	Energy, environment and microbial survival: Survival and Energy, Reserve Material in Bacteria – glycogen and trehalose, lipid, PHA, TAG, Wax ester and Hydrocarbpns, polypeptides, Polyphosphate, Resting cells – sporulation, cysts, viable and non-culturable cells, Nanobacteria, Programmed cell death.	1	13		
Instructional Hours					
	То	tal Hours	75		

- 1. Byung Hong Kim, Geoffrey Michael Gadd, **Bacterial Physiology and Metabolism**, Cambridge University Press, 2008.
- 2. Alber G. Moat, John W. Foster, Michael P. Spector, Microbial Physiology, Wiley & Sons, 2002.
- 3. Jain J.L., Fundamentals of Biochemistry, S. Chand and Company, 2004.

Unit – I	:	Textbook 1, Chapter 3-5: 35-85.
Unit – II	:	Textbook 3, Chapter 9, 16-18: 164-250, 399-476.
Unit –III	:	Textbook2, Chapter 12: 434-446.
Unit – IV	:	Textbook 3, Chapter 13, 14: 450-502.
Unit – V	:	Textbook 1, Chapter13: 482-493.

Reference Book(s):

- 1. Caldwell. D.R. Microbial Physiology and Metabolism, Wm C. Brown Publisher. 1995.
- 2. Stainier R.Y. Ingraham, J.L. Wheolis, H.H. and Painter. P,R. Microbiology. 1986.
- 3. <u>https://www.easybiologyclass.com/carbohydrates-simple-lecture-notes</u>

	Tools for Assessment (50 Marks)										
CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total					
8	8	10	8	8	8	50					
			36 1								

COS	PO1	PO2	PO3	PO4	PO5	PO6	pping PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	L	Н	М	М	L	Н	Н	М	М	L	L
CO2	Н	Н	L	М	L	М	L	Н	Н	М	Н	L	Н
CO3	Н	М	L	Н	М	М	L	Н	L	М	L	L	М
CO4	М	Н	М	М	М	L	L	Н	М	Н	L	L	М
CO5	Н	Н	М	М	Н	Н	Н	Н	Н	М	L	L	М

H-High; M-Medium; L-Low

Course Code	Title				
21PGMBC103	Paper III	- Analytical Methods	in Microbiology		
Semester : I	Credits : 4	CIA: 50 Marks	ESE : 50 Marks		

Course Objective:

To make the students to gain knowledge on techniques commonly performed in a microbiology laboratory.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Gain knowledge about microscopy history and principles	5.

CO2 Understand the principles and application of chromatography.

CO3 Develop knowledge on centrifugation basic principles and applications.

CO4 Explain the electrophoresis principle, types and applications.

CO5 Describe the colorimetric principles by specific methods.

Offered by: Department of Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
Ι	Historical Development: Microscopy: history and principles of microscopy, properties of light, magnification power, resolution, limit, resolving. Bright field - Dark Field - Phase contrast and Fluorescence microscope confocal microscopy, atomic force microscope Electron Microscope - Specimen preparation -TEM and SEM.	2	4
	Instructiona	l Hours	15
п	Chromatography: Principles, Instrumentation, Types and Detection methods – Paper, TLC, HPLC, GC, Ion- exchange, Column, Gel permeation, Chiral, and Affinity Chromatography Applications.	1	3
	Instructiona	l Hours	15
ш	Centrifugation: Basic principles of centrifugation, differential and density gradient: zonal and isopycnic centrifugation. Sedimentation coefficient, factors affecting sedimentation coefficient. Ultracentrifuges: analytical and preparative with application. Rotors: types and applications.	2	3
-	Instructiona	l Hours	15
IV	Electrophoresis: Principles, Instrumentation, Types. Staining and Detection methods – Isoelectrophoresis – isoelectric focusing – Applications MALDI-TOF, 2D gel electrophoresis Native PAGE and SDS-PAGE.	1	4
	Instructiona	l Hours	15
v	Colorimetry: Principles, Instrumentation and Applications–Basic principles of spectrophotometry - The laws of absorption, principles and instrumentation for UV-visible and IR spectroscopy. Principles, theory and applications of spectrofluorometry, and Flame photometry.	1	5
	Instructiona	l Hours	15
	Tota	l Hours	75

1. Boyer. Modern Experimental Biochemistry, 3rd Edition, Pearson Education, 2007.

2. Keith Wilson and John Walker. Principles and Techniques in Practical

Biochemistry, 5ht Edition, Cambridge University Press, 2000.

Unit I	:	Text Book 2, Chapter 4: 131-163.
Unit II	:	Text Book 1, Chapter 3: 77-127.
Unit III	:	Text Book 2, Chapter 3: 103-130.
Unit IV	:	Text Book 1, Chapter 4: 129-158.
Unit V	:	Text Book 1, Chapter 5: 159-188.

Reference Book(s):

- 1. Kathleen Talaro and Arthur Talaro. Foundation in Microbiology. WCB Publishers. 1993.
- 2. David Freifelder. Physical Biochemistry. (2nd Edition)
- 3. Prescott, L.M J.P. Harley and C.A. Klein. **Microbiology**, 2nd Edition Wm, C. Brown publishers. 1995
- 4. Marion G. Macey. Flow Cytometry Principles and Applications.
- Wilson Keith and Walker John, Principles and Techniques of Biochemistry and Molecular Biology, 6th Edition. Cambridge University Press, New York, 2005.
- 6. https://www.saylor.org/site/wp-content/uploads/2012/07/Chapter121.pdf
- 7. http://gnu.inflibnet.ac.in:8080/jspui/bitstream/123456789/1262/1/colorimetry.pdf

Tools for Assessment (50 Marks)						
CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	L	L	Н	Н	М	Н	Н	М	L	L	Н
CO2	Н	Н	М	L	Н	Н	М	Н	L	М	L	L	Н
CO3	Η	Н	М	М	Н	L	М	Н	L	L	Н	М	Н
CO4	Н	Н	М	М	Н	Н	L	Н	Н	М	Н	М	М
CO5	Н	Н	М	М	Н	Н	L	Н	М	М	Н	Н	М

H - High; M - Medium; L - Low

Course Designed by	Verified by HOD	Checked by	Approved by
	Hume wer	in ta	n
(Dr. C. ELATH NATHEER)	· Cor. M. T. Marconu	Convenation in	CHER D MID DOM
	· (U III) ·] J · A CAME	CDC	J J MAR LUL

Course Code	Title				
21PGMBC104	Paper IV - Virology and Mycology				
Semester : I	Credits : 4	CIA: 50 Marks	ESE : 50 Marks		

Course Objective:

Students can have knowledge about Classification and Structure of viruses and their cultivation methods. They can have knowledge about various diseases caused by viruses. They can know various diagnostic and therapeutic treatments for fungal infections. **Course Outcomes:**

	On successful completion of this course the students will be able to				
CO1	Know about structure and characteristics of viruses.				
CO2	Understand the disease caused by DNA viruses.				
CO3	Analyse and determine infection caused by RNA viruses.				
CO4	Know about fungal diagnostic procedures and treatment.				
CO5	Explain Etiologies, epidemiology and basic mechanisms of pathogenesis in mycosis.				

Offered by : Department of Microbiology

Course Content

Instructional Hours/ Week : 5

Unit	Description	Text Book	Chapter
I	Viral classification and properties: Historical perspective of virology - Scope of virology -Viral classification and properties of viruses – Replication of viruses, cultivation of viruses (animal inoculation, Embryonated egg and tissue culture) - properties of viroids and Prions.	1	29
	Instruction	nal Hours	15
п	Animal DNA viruses: Animal viruses- DNA viruses - morphology, replication, pathogenesis and laboratory diagnosis of Pox virus, Adeno virus, Hepatitis viruses – type A,B and D. Herpes simplex viruses, Oncogenic viruses- Papova virus,- oncogenes and Oncogenesis.	1	32-35
	Instruction	nal Hours	15
ш	Animal RNA viruses: Animal viruses - RNA viruses - morphology, replication, pathogenesis and laboratory diagnosis of Poliovirus. Rabies virus, Influenza virus, Mumps virus, Measles virus and Rubella virus, Retro virus - HIV virus. Dengue, Japanese Encephalitis, SARS, Swine Flu and Corona Virus.	1	38-44
	Instruction	nal Hours	15
IV	General Properties of Fungi: Isolation and identification of medically important fungi – diagnosis of fungal disease - routine mycological techniques - antifungal agents.	2	5
	Instruction	nal Hours	15
V	Fungal Infections: Superficial mycosis –Pityriasisversicolor, Tineanigra, piedra. Cutaneous mycosis – Dermatophytes. Systemic mycosis –Opportunistic mycosis – Candidosis, Cryptococcosis, aspergillosis. Subcutaneous mycosis - Sporotrichosis, Chromoblastomycosis, Mycetoma.	1, 3	45, 40
	Instruction	nal Hours	15
	То	tal Hours	75

1. Jawetz, E., Melnic, J.L., and Adelberg, E.A. **Review of Medical Microbiology**. 22nd edition, Lange Medical Publishers, New York, 2001.

NASC

2021

- 2. Fritz H. Kayser, K. A. Bienz, J. Eckert, Medical Microbiology. Thieme publishers, 2005.
- 3. Prescott, M., Harley, J.P., and Klein, D.A., **Microbiology**, 10th edition, McGraw-Hill Inc, NY, 2016.

Unit I	:	Text Book 1, Chapter 29 (407-427)
Unit II	:	Text Book 1, Chapter 32-35 (457-512)
Unit III	:	Text Book 1, Chapter 38 -44 (553-657)
Unit IV	:	Text Book 2, Chapter 5 (348-357)
Unit V	:	Text Book 3, Chapter 40 (942-950), T.B 1 Chapter 45- (671-710)

Reference Book(s):

- 1. Knipe D.M., Howley P.M., and Griffin D.E., **Fields Virology**. 5thedition, Vol I,II. Lippincott, Williams & Wilkins, 2006.
- 2. Cann, A.J. Principles of Molecular Virology, Academic Press, 2005.
- 3. Dimmock, N.J., Easton, A.J., and Leppard, K.N., **Introduction to Modern Virology**, 6th edition, Blackwell Scientific Publications, Oxford, UK, 2007.
- Flint, S.J., Racaniello, V.R., Enquist, L.W., Rancaniello, V. R., and Skalka, A. M., Principles of Virology: Molecular Biology, Pathogenesis, and Control of Animal Viruses. American Society Microbiology, 2003.
- 5. <u>https://paramedicsworld.com/microbiology-notes/virology-notes/medical-paramedical-studynotes</u>

Tools for Assessment (50 Marks)									
CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total			
8	8	10	8	8	8	50			

							wapp	ing					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO
CO1	Η	Н	М	Η	Η	М	Н	Η	Η	Η	L	Н	Μ
CO2	Η	Η	М	Η	М	Н	М	М	Η	М	L	Н	Н
CO3	Н	Н	L	М	Н	Н	М	Н	Н	Н	М	Н	L
CO4	Н	Н	L	Н	Н	Н	М	Н	Н	М	М	Н	М

Η

М

Μ

Μ

Μ

Η

Η

Η

Mapping

H-High; M-Medium; L-Low

Η

Μ

Μ

Η

Η

CO5

Course Designed by	Verified by HOD	Checked by	Approved by
Ditte	Elecume 1 30/2/2	in the second	AS

Course Code	Title						
21PGMBQ101	Practical I – Lab in	Practical I – Lab in General and Analytical Microbiology					
Semester : 1	Credits : 4	CIA: 50 Marks	ESE : 50 Marks				

Course Objective:

To make the students to gain knowledge on the distribution, morphology and physiology of various microorganisms and to understand the laboratory skills, techniques, control of infectious microbes from various sources. Students can know microbiology related techniques like staining cultural characteristics and other techniques.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Develop knowledge on laboratory guideline, and various staining techniques and sterilization methods.
CO2	Understand the media preparation, culture techniques, preservation of microorganisms
CO3	Acquire knowledge about measurement of microbial cell.
CO4	Comprehend knowledge on basic lab instrumentation.
CO5	Understand working principles of advanced instrumentation.

Offered by: Department of Microbiology

Course Content

Instructional Hours / Week : 5

S. No.	Experiment
1	Laboratory precautions, basic Lab glass wares.
2	Methods of Sterilization – Principles and Methods – Physical Methods – Dry heat- Hot air Oven, Moist heat – Autoclave, Chemical methods – Alcohols, Aldehydes
3	Bacterial Staining – Simple, Grams, Acid fast, Spore, Capsule
4	Isolation of bacteria and fungi from various samples
5	Culture media Preparation, Liquid and Solid Media, Types of Media –Simple, Defined, Complex, Enriched, Enrichment, Differential, Selective, transport and Anaerobic Media
6	Pure Culture Techniques –Pour plate, Spread Plate and Streak plate
7	Enumeration of Bacteria, fungi and Actinomycetes from Soil
8	Cultural Characteristics of Microorganisms
9	Maintenance and preservation of Microbes
10	Measurement of microbial cell load
11	Isolation of bacteria from samples by Standard Plate Count
12	Cultivation of Anaerobic Bacteria
13	Micrometry- Size and Shape of an Organism
14	Basic Lab instrumentation – Autoclave, Hot air oven, pH meter, Centrifuge, laminar air flow.
15	Advanced Lab Instrumentation – Thermal cycler, Spectrophotometer, SDS Page, Blotting, HPLC, GC MS
	Instructional Hours : 75

- 1. Rajan S and Selvi Christy R. **Experimental Procedures in Life Sciences**. Anajanaa Book House, Chennai, 2015.
- 2. James G Cappuccino and Natalie Sherman. **Microbiology A Laboratory Manual**. Pearson Education Limited, 2017

Reference Book(s):

- 1. Dubey RC and Maheshwari DK., **Practical Microbiology**. S Chand and Co. Ltd., New Delhi, 2002.
- 2. P. Gunasegaram, Laboratory Manual in Microbiology. New Age International. 2007.
- 3. https://microbenotes.com/fields-of-microbiology/
- 4. <u>https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology (Boundless)/1%3A_Introduction_to_Microbiology/1.3%3A_The_Science_of_Microbiology/1.3B_Applied_Microbiology</u>

Laboratory Performance							
Eı	Level of ngagement in Lab	Preparation	Result	Test I	Test II	Observation Note Book	Total
	8	8	8	10	10	6	50

Tools for Assessment (50 Marks)

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Η	М	Η	Н	М	М	Н	М	М	L	Н	Н
CO2	Н	Η	Н	Η	Н	Н	М	Н	Н	L	М	М	Н
CO3	Н	Н	L	L	М	Н	М	Н	Н	L	L	Μ	Н
CO4	Н	Н	L	М	Н	Н	L	Н	Н	Н	М	М	М
CO5	Н	Н	М	L	Н	Н	L	Н	Н	М	L	М	L

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
(Db. S. ESATH NATHECR)	Ellyme - 1 30/2/n	in the second	A
	(m.m.nowcaron	Convenor	3 D MAR 2

SEMESTER – II

Course Code	Title					
21PGMBC205	Paper V – Microbial Genetics and Molecular Biology					
Semester : II	Credits : 4	CIA: 50 Marks	ESE : 50 Marks			

Course Objective:

Make students understand about the structure and function of biologically important molecules. Students will learn about DNA, RNA and the molecular events that govern cell functions.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Describe the structure and function of DNA and RNA in a cell.
CO2	Elucidate central cell biological processes and how they are regulated.
CO3	Explain RNA synthesis and its control mechanisms.
CO4	Understand how molecular transformation process.
CO5	Comprehend DNA repair and recombination.
-	

Offered by: Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter					
I	DNA: Structure, Salient features of double helix, Types of DNA, denaturation and renaturation, topoisomerases; Organization of DNA Prokaryotes, Viruses, Eukaryotes. RNA Structure	1	10					
	Instructional Hours							
п	Replication: Bidirectional and unidirectional replication, semi- conservative, semi- discontinuous replication. Mechanism of DNA replication: Enzymes and proteins involved in DNA replication –DNA polymerases, DNA ligase, primase, telomerase – for replication of linear ends.	3	3					
	Instructional Hours		15					
III	Transcription: Definition, promoter - concept and strength of promoter. Transcriptional Machinery and Mechanism of transcription. Principles of transcriptional regulation, regulation at initiation with examples from <i>lac</i> and <i>trp</i> operons.	1	13					
	Instructional Hours		15					
IV	Transformation : Discovery, mechanism of natural competence Conjugation - Discovery, mechanism, Hfr and F' strains Transduction - Generalized transduction, specialized transduction. Property and function of plasmids, Types of plasmids	2	15					
	Instructional Hours		15					
V	DNA repair and recombination : DNA Mismatch Repair, Double Strand Break Repair, Recombination as a molecular biology tool Mutations and mutagenesis: Definition and types of Mutations; Physical and chemical mutagens; Uses of mutations.	1	18					
Instructional Hours								
	Total Hours							

2021

Text Book(s):

- 1. Benjamin A. Pierce, **Genetics A Conceptual Approach**, W. H. Freeman and Company, Fourth Edition, 2012.
- 2. Peter J. Russel, Genetics A Molecular Approach. Pearson Education Inc., Third Edition, 2010.
- 3. Primrose, S.B. and R.M. Twyman, **Principles of Gene Manipulation and Genomics**, Black well Publishing, Seventh Edition, 2006.

Unit I : Text Book 1, Chapter 10:271-285. Unit II : Text Book 3, Chapter 3: 36-50. Unit III: Text Book 1, Chapter 13: 351-367. Unit IV: Text Book 2, Chapter 15: 429-460. Unit V : Text Book 1, Chapter 18:481-505.

Reference Book(s):

- 1. James D. Watson, Alexander Gann, Tania A.Baker, Michael Levine, Stephen P.Bell, RishardLosick, **Molecular Biology of the Gene**, Cold Spring Harbor Laboratory Press. New York. Seventh Edition, 2014.
- 2. Primrose, S.B., R. M. Twyman and R. W. Old, **Principles of Gene Manipulation**, Sixth Edition, Blackwell Science Publishing, 2008.
- 3. Brown TA.Gene Cloning and DNA Analysis An Introduction, Wiley Blackwell Publishing, Sixth Edition, 2010.
- 4. <u>https://ocw.mit.edu/courses/health-sciences-and-technology/hst-161-molecular-biology-and-genetics-in-modern-medicine-fall-2007/lecture-notes/</u>

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

							Mappi	ng					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	L	Н	Н	Н	Н	Н	Η	Н	Н	Н	Н
CO2	L	Н	М	Н	Н	Н	Η	М	Н	М	Н	Н	Н
CO3	L	L	L	М	Н	Н	Н	Н	Η	Н	Н	М	Н
CO4	Н	М	L	L	Η	Η	Н	Н	Η	Н	Н	Н	Η
CO5	Н	М	L	М	Н	Η	Н	Н	Η	М	Н	Н	М

Course Designed by	Verified by HOD	Checked by	Approved by
Ranto	Menune Par 3013/m	The second second	AS
	Dem JUM and	Convenor	3 0 MAR 202

NASC	2021

Course Code	Title				
21PGMBC206	Paper VI - Immunology				
Semester : II	Credits : 4	CIA : 50 Marks	ESE: 50 Marks		

Course Objective:

Imparting advanced technological knowledge through a detailed study of topics such as immunodiagnosis, assessment of cell mediated immunity and current trends in immunology of diseases.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Gain knowledge on cells and organs of immune system.				
CO2	Learn antigen and antibody reaction and determination.				
CO3	O3 Acquire knowledge on antigen and immunoglobulin's.				
CO4	Understand different types of hypersensitive reactions.				
CO5	Know about autoimmune diseases and treatment.				

Offered by: Microbiology

Course Content

Instructional Hours/ Week : 5

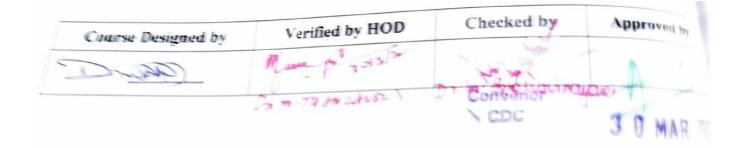
Unit	Description	Text Book	Chapter			
I	Cells and Organs of immune system: Cells of the immune system - lymphoid cells, mononuclear cells, granulocytic cells and mast cells. T & B – cell maturation, activation and differentiation. Organs of the immune system - primary and secondary lymphoid organs – cutaneous / mucosal - associated lymphoid tissues.	2, 3	3, 2			
	Instructiona	al Hours	15			
п	Antigen - Antibody reactions:Agglutination and precipitation.Immunoelectrophoresis,ComplementfixationImmunofluorescence, ELISA, RIA, Immuno electron microscopy.Forensic serology, Immunohaematology – ABO, RH incompatibility.	1, 3	13, 6			
	Instructiona	al Hours	15			
ш	IIIAntigens and Immunoglobulin's: factor influence immunogenicity - Epitopes - Haptens - study of antigenicity. Immunoglobulin's - structure - types and biological activities. Antigenic determinants. Monoclonal antibodies.					
	Instructiona	al Hours	15			
IV	Hypersensitive reactions: Type. Complement system - classical, lectin pathways and lectin pathways, biological consequences. T - cell receptor. Cytokines – Structure, functions and receptors. Major Histocompatibility complex, classes, structure and its functions.	3	7, 13			
	Instructiona	al Hours	15			
V	Autoimmune diseases: Antigen processing and presentation - Transplantation immunology - Transplantation antigens, HLA typing. Tumor immunology - treatment of tumors. Immune response to infectious disease.	1, 3	19, 20			
	Instructiona	al Hours	15			
	Tota	al Hours	75			

- 1. Ananthanarayanan, R., and Panicker, C.K.J., **Text Book of Microbiology**. Orient Longman. New Delhi, 2004.
- 2. Coleman, R.M., Lombard, M.F., and Sicard, R.E., Fundamental Immunology, 4th edition, Wm. C. Publishers. London. 2000.
- 3. Goldsby, R.A., Barbara, T.J.K., and Osborne, A., **Kuby Immunology**, 6th edition, W.H. Freeman and Company, New York, 2006.

Unit I: Text Book 2, Chapter 3 (47-66), Text Book 3, Chapter 2 (24-55) Unit II: Text Book 1, Chapter 13 (92-109), Text Book 3, Chapter 6 (137-158) Unit III: Text Book 1 Chapter 11 (80-91), Text Book 3, Chapter 4 (76-100) Unit IV: Text Book 3, Chapter 7 (161-182); Chapter 13 (299-317) Unit V: Text Book 1 Chapter (169-176), Text Book 3, Chapter 20 (462-478)

Reference Book(s):

- 1. Coleman, R.M., Lombard, M.F., and Sicard, R.E., **Fundamentals of Immunology**,4th edition, WMC Publications. London, 2000.
- 2. Hyde, R.M. **NMS Immunology**. 4thedition, Lippincott Williams and Wilkins, Baltimore, 2000.
- 3. Janeway, Jr. C.A., Walport, P.T.M., and Shlomchick, M.J.,**Immunobiology The Immune System in Health and Disease**, 5th edition, Churchill Livingstone - Garland Publishing Company, New York, 2001.
- 4. https://www.roitt.com/


Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

N /			
IVI	an	nı	ng
T A W	···P	P-	
	_	_	-

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	Н	Н	L	М	М	М	L	Н	Н	Н	М	Н
CO2	Н	Н	L	L	Н	L	L	М	Н	М	Н	Н	М
CO3	М	М	М	М	М	L	Η	Н	Н	Н	Н	М	Н
CO4	М	L	М	М	М	Н	L	М	Н	Н	Н	Н	Н
CO5	Н	М	Η	М	Н	Н	Η	Н	Н	М	Н	Н	М

H-High; M- Medium; L-Low

Course Code	Title							
21PGMBC207	Paper VII – Computational	Paper VII – Computational Biology, Microbial Genomics and Proteomics						
Semester : II	Credits : 4	CIA : 50 Marks	ESE: 50 Marks					

Course Objective:

To know the computational analysis of genes and genomes, protein sequences, analyzing proteins in lab and protein and gene sequence modification methods.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	List the importance of bioinformatics in systems biology.
CO2	Explain computational analysis the sequences for gene prediction.
CO3	Identify the use of genes and metabolic pathways in systems biology.
CO4	Infer the appropriate tools in systems biology for modeling.
CO5	Know about Concepts of OMICS.

Offered by: Biotechnology

Course Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter
I	Biological Databases: Introduction to bioinformatics - classification of biological databases, Biological data formats, Application of bioinformatics in various fields. Systems Biology- Understanding Biology at system level, requirement of system level understanding, computing and system biology.	1	1
	Instruction	al Hours	15
п	Introduction to Sequence alignment: Substitution matrices – PAM and BLOSUM. Pairwise alignment methods; Multiple sequence alignment methods. Evolutionary analysis: distances - clustering methods – rooted and unrooted tree representation – Bootstrapping strategies.	1	4
	Instruction	al Hours	15
ш	Genes and Genomes: Interpreting expression data using Gene Ontology; Evolution of modularity and transcriptional networks, metabolite sensing and translational control; Microarrays-types and applications.	3	5
	Instruction	al Hours	15
IV	Metabolic pathway database: KEGG pathway database, Concept of metabolome and metabolomics. Gene networks - Integration of Networks.	4	24
	Instruction	al Hours	15
V	OMICS Concepts: Genomics, Proteomics, transcriptomics, interactomics, Phenomics, localizomics; Combination of omics approaches: data integration, modeling; Synthetic biology	3	7
	Instruction		15
	Tot	al Hours	75

- 1. Rastogi, C. S., Namita Mendiratta, **Bioinformatics-Methods and Applications**, PHI Learning Pvt. Ltd., 4th Edition, 2013.
- 2. Harisha, S., **Fundamentals of Bioinformatics**, I. K. International Publishing House, 1st Edition, 2007.
- 3. Sandy Primrose and Richard Twyman., **Principles of Gene Manipulation and Genomics**, Blackwell Publishing, 2010.

Unit – I: Text Book 1, Chapter 1, Page No. 1-26.

Unit - II: Text Book 1, Chapter 4, Page No. 57 -70

Unit – III: Text Book 3, Chapter 5, Page No. 106-126.

Unit - IV: Text Book 4, Chapter 24, Page No. 472-479.

Unit – V: Text Book 3, Chapter 7, Page No. 153-168.

Reference Book(s):

- 1. Teresa Attwood., **Introduction to Bioinformatics**, Pearson Publications, 1st Edition, 2007.
- 2. Andreas D. Baxevanis, B.F. Francis Ouellette., **Bioinformatics**, Wiley Publishers, 3rd Edition, 2011.
- 3. Dov Stekel., **Microarray Bioinformatics**, Cambridge University Press, 1st Edition, January 2010.
- 4. David Mount., **Bioinformatics: Sequence and Genome Analysis,** Cold Spring Harbor Lab Press, 2nd Edition, 2004.
- 5. https://www.ncbi.nlm.nih.gov/books/NBK143764/
- 6. <u>https://www.expasy.org/links</u>
- 7. <u>https://ww2.chemistry.gatech.edu/~lw26/course_Information/4581/labs/tbp/rasmol/rasmol_tbp_fset.html</u>

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Mapping													
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	М	М	L	М	М	Н	Н	Н	Н	М	Н
CO2	Н	Н	Н	Н	М	Н	М	Н	Н	М	Н	Н	Н
CO3	М	Н	М	М	Μ	М	М	М	Н	Н	М	Н	Н
CO4	М	Н	М	L	Н	Н	Н	М	Н	Н	Н	М	Н
CO5	Н	Н	L	L	Н	Н	Н	Н	Н	М	Н	Н	Н
-		6 3 6 1'	тт										

High; M-Medium; L-Low.

Course Designed by	Verified by HoD	Checked by	Approved by
Riting	Chun major	11 - an	- NS
	V OR MRIGWEIGHT	P Convencerino	yari
		< CDC	3 0 MAR 2022

NASC | 2021

Course Code	Title						
21PGMBC208	Paper VIII – Bioprocess Technology						
Semester : II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks				

Course objective:

Develop skills of the students in the area of Bioprocess Technology with emphasis on screening, strain improvement methods and microbial production of various metabolites.

Course outcomes:

On successful completion of this course the students will be able to

CO1	Operate fermenter in the fermentation process.
CO2	Get knowledge about the sterilization of the medium and upstream process of bioreactors.
CO3	Attain technical knowledge on bacterial growth kinetics.
CO4	Analyse the types of microbial products and downstream processing.
CO5	Demonstrate the screening and strain improvement of industrially important organisms.

Offered by: Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
Ι	Basic Design of Fermenter: Design of a basic fermenter, bioreactor configuration, design features, computer control of fermentation process, measurement and control of process.Types of Bioreactors and its functions.	1	15
	Instruction	al Hours	15
п	Physical factors and scale-up: Transport phenomena in fermentation: Gas- liquid exchange and mass transfer, oxygen transfer, critical oxygen concentration, heat transfer, aeration/agitation, its importance. Sterilization of Bioreactors, nutrients, air supply, products and effluents, process variables and control, scale-up of bioreactors.	3	6
	Instruction	al Hours	15
Ш	Cultures in the fermenter: Growth of cultures in the fermenter. Importance of media in fermentation, media formulation and modification. Kinetics of growth in batch culture, continuous culture with respect to substrate utilization, specific growth rate, steady state in a chemostat, fed-batch fermentation, yield of biomass, product, calculation forproductivity.	4	2
	Instruction	al Hours	15
IV	Microbial Products and Downstream process: Enzymes- Introduction, Immobilized Enzyme system, large scale production, medical and industrial application. Down streaming process of microbial products (Peptides, Biopolymers, surfactants, Enzymes) - separation, extraction and purification, drying, crystallization centrifugation, filtration, freeze-drying, spraydrying.	3	7
	Instruction	al Hours	15

V	Strain improvement & Preservation: Isolation, selection and improvement of microbial cultures. Strain improvement for the selected organism: Use of recombinant DNA technology, protoplast fusion techniques for strain improvement. Improvement of characters other than products and its application in the industry. Preservation of cultures after strain improvement programme.	2	6		
Instructional Hours					
	Tota	al Hours	75		

- 1. Mansi, E.M.T., and Bryce, C.F.A., **Fermentation Microbiology and Biotechnology**. 3rd edition, Taylor and Francis, NewYork, 2012.
- 2. McNeil. B and Harvey, L.M.**Practical Fermentation Technology**, John Wiley & Sons, Ltd., 2008.
- 3. Waites, M., Morgan, N.L., Rockey, J. S., Higton, G.**Industrial Microbiology: An** Introduction, Wiley, 2001.
- 4. Stanbury, P.T., and Whitaker, A.**Principles of Fermentation Technology**, Pergamon Press. NY, 2005.

Unit I: Text Book 1, Chapter 15 (415-430) Unit II: Text Book 3, Chapter 6 (94-108) Unit III: Text Book 4, Chapter 2 (21-68) Unit IV: Text Book 3, Chapter 7 (109-123) Chapter 9 - 11 (113-165)

Unit V: Text Book 2, Chapter 6 (125-160), T. Book 3, Chapter 4 (75-85).

Reference Book(s):

- 1. Patel, A.H. Industrial Microbiology. Macmillan India Ltd. NewDelhi, 2003.
- 2. Reed, G. **Presscott and Dunn's Industrial Microbiology**. 5th edition, CBS Publishers, NewDelhi, 2002.
- 3. <u>https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Boundless)/17%3A_Industrial_Microbiology</u>

CIA I	CIA II (Online)	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Tools for Assessment (50 Marks)

TA /	• • •
- VI 91	pping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	L	Η	L	L	Н	М	Н	Н	Н	Н	М	Н	Н
CO2	М	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н
CO3	М	М	L	М	Н	Н	Н	Н	Н	М	Н	Н	Η
CO4	Η	М	L	М	Н	Н	Н	Н	Н	Н	Н	Н	М
CO5	Н	Н	М	М	Н	Н	Н	Н	Н	М	М	Н	М

H-H igh; M-Medium; L-Low

CourseDesignedby	Verifiedby HOD	Checkedby	Approvedby
TUR	Chan Jacobs	A A A A A A A A A A A A A A A A A A A	aut
	. Un moloonin	Conventor	3 P MAR 2022

30

31

Course Code	Title				
21PGMBQ202	Practical II – Lab in Molecular Biology and Immunology				
Semester : II	Credits : 4	CIA : 50 Marks	ESE : 50Marks		

Course Objective:

Students get hands on experience on the experiments related to molecular biology and immunology.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Examine the isolation and characterization of plasmid and chromosomal DNA.
CO2	Demonstrate the principle and characterization of SDS PAGE.
CO3	Analyse the amplification of DNA by PCR.
CO4	Perform various serological techniques.
CO5	Perform various immunotechniques.

Offered by: Microbiology

Course Content

Instructional Hours / Week : 5

S. No.	Title
1	Isolation of mutants: Auxotrophic and Antibiotic resistant.
2	Isolation and characterization of chromosomal DNA from bacteria.
3	Isolation and characterization of plasmid DNA from bacteria.
4	Restriction digestion of DNA by agarose gel electrophoresis.
5	Separation of protein by SDS PAGE.
6	Isolation of protoplast and spheroplast.
7	DNA amplification by PCR.
8	Agglutination reaction: Blood grouping.
9	Serological tests: WIDAL, ASO, CPR, RPR
10	Precipitation reaction: ODD, RID
11	Immunoelectrophoresis: Counter current and Rocket electrophoresis
12	ELISA
	Total Hours: 75

Text Book(s):

- James G. Cappuccino and Chad Welsh. Microbiology A Laboratory Manual. Pearson Education Limited. 11thedition. 2017.
- 2. Aneja, K. R. Experiment sin Microbiology, Plant Pathology and Biotechnology. New Age International (P) Limited Publisher. 2014.

Reference Book(s):

- Dixit, R., K. Bisen, A. Kumar, A. Borah and C. Keswani. Lab Manual in Molecular Biology.1stedition. 2016.
- Goldsby, R. A., T. J. Kindt, B. A. Osborne and J. Kuby. Immunology, 5thedition. W.H.Freeman andCompany, 2003.

Tools for Assessment	(50 Marks)
-----------------------------	------------

Labora	tory Performa	nce				
Level of engagement in lab	Preparation	Result	Test I (Mid sem.)	Test II (Model)	Observation notebook	Total
8	8	8	10	10	6	50

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н
CO2	М	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н
CO3	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	Н	Н
CO4	Н	Н	Н	М	Н	Н	Н	Н	Н	Н	Н	Н	Н
CO5	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	М	Н	М

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
Salation	Aleren pa 30/2m	and the second	A
	Drm. To In atus	D'Callahor	3 0 MAR 2022

SEMESTER – III

2021

Course Code		Title			
21PGMBC309	Paper IX -Environmental and Agricultural Microbiology				
Semester: III	Credits: 4	CIA - 50 Marks	ESE - 50 Marks		

Course Objective:

To gain understanding of the role of microbes in soil physiology, as well as air pollution and its sources and causes, as well as environmental contamination and toxicology, environmental health, monitoring, technology, geology, and management.

Course Outcomes:

On successful completion of this course the students will be able to

Acquire the knowledge of different microbes from air, air sanitization and air sampling using various techniques.
Understand the factors influencing presence of and activities of microorganisms in
different soils.
Know the Microorganisms responsible for water pollution especially Water-borne
pathogenic microorganisms and their transmission.
Understand various biogeochemical cycles – Carbon, Nitrogen, Phosphorus cycles
etc. and microbes involved.
Understanding the use of Biofertilizers is being emphasized along with chemical
fertilizers and organic manures.

Offered by Microbiology Course Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter
I	Aerobiology -Microbial contamination of air-Biological indicators of air pollution. Air sampling Devices. Significance of air Microflora, Air sanitation- methods and applications. Room sanitation in Hospitals, Industries and Pharmaceuticals etc. Outline of Airborne diseases and preventive measures. Effect of Air pollution on plants and Humans.	2	15
	Instructional Hours		15
П	Soil Microbiology -Structure, Types, Physical and Chemical properties-Soil microbes (Types and Enumeration). Soil as a source of industrial strains. Biogeochemical cycling-Nitrogen, Carbon, Phosphorous, Sulphur, Iron cycles and its importance.	1	2
	Instructional Hours		15
ш	Water Microbiology- Water Pollution and Waterborne Pathogens- Assessment of water quality (Microbial) Bacteriological examination of water-Indicator organisms. Bacteriological analysis of drinking water and other quantitation techniques; drinking water purification. Waste water- Sources, types, composition and characteristics (DO, BOD, COD). Microbiology of waste water. Sewage treatment.	1	9-11
	Instructional Hours		15
IV	Microbial interactions: Positive and Negative interactions. Microbial flora of soil. Plant – Microbe interactions:Nitrogen fixation- Symbiotic and non-symbiotic, physiology and genetics of nitrogen fixation. Mycorrhizae, Rhizosphere and Phylloplane microorganisms. Animal-Microbe Interactions - Rumen microflora, Nematophagous fungi, Bioluminescent bacteria, Termite nutrition	2	48
	Instructional Hours		15
V	Applications of microbes in agriculture: Biofertilizers. Mass production of biofertilizers. Bio pesticides- bacterial, fungal and		14,15, 37

NASC 2021

	viral. Advantages and disadvantages of biopesticides over the chemical counterparts. GM crops and its significance.	2	& 45
Instructional Hours			15
Total Hours			

Text Book(s):

- 1. Subba Rao N.S. Soil microbiology, 4th Edition Oxford and PHB publishers. 2020.
- 2. Vijay Ramesh.K. Environmental Microbiology. 2019.

Unit I: Text Book 2 Chapter 15: 56 Unit II:Text Book 1 Chapter 2: 11-46 Unit III: Text Book 1 Chapter 9-11: 317-337 Unit IV: Text Book 2 Chapter 48: 141 Unit V: Text Book 2 Chapter 14, 15, 37 & 45: 302-342

Reference book(s):

- 1. Gupta P.K. Biotechnology and genomics, Rastogi Publications. 2013.
- 2. Larry. L. Barton, Microbial Ecology, Atlas and Bartha. 1st Edition. 2011.
- **3.** Singh DP & SK Dwivedi. **Environmental Microbiology and Biotechnology.** 1st Edition, New Age International (P) Ltd., Publishers, New Delhi. 2005.
- 4. Joseph C Daniel. Environment Aspects of Microbiology. 1st Edition, Bright sun Publications, Chennai. 1999.
- 5. <u>https://drive.google.com/file/d/1R7kCrPX14ejScvHuEAxIs3a1N9NC1EdO/view?usp=sharing</u>
- $6. \ \underline{https://drive.google.com/file/d/1kz/Q4K6Ta8pHneJxzdRcuqFG7UOhWq9y/view?usp=sharin}$
 - g

Tools for Assessment (50 Marks)									
CIA I	CIA II	CIA III	Assignment	Quiz	Model	Total			
8	8	10	8	8	8	50			

	Trapping												
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	М	L	Н	L	L	Μ	Н	Н	Н	L	L	Μ
CO2	М	Н	L	Н	М	L	Н	Н	Н	Н	L	L	М
CO3	Н	Н	М	Н	М	Н	Μ	Н	Н	Н	L	L	М
CO4	L	L	М	Н	Н	Μ	Н	Н	L	Н	L	L	L
CO5	М	Н	L	Н	М	Μ	Н	М	М	Н	L	L	Н

Mapping

H - High; M - Medium; L - Low

Course Designed by	Verified by HOD	Checked by	Approved by
Liatinaldo 103 2022	E Furner Join	West .	H 3
DELS ESATH NATHERE	(trom The average)	I convertion may	4 3 0 MAR 2022

NASC 2021

Course Code	Т	itle				
21PGMBC310	Paper X – Microbial Biotechnology and IPR					
Semester: III	Credits: 4 CIA : 50 Marks ESE: 50 Marks					

Course Objective:

This course helps to adhere to the ethical practices appropriate to the discipline at all times, adopt safe working practices relevant to the industries and in research field.

Course Outcomes (CO)

On successful completion of this course the students will be able to

CO2 Interpret the use of microorganisms in Industrial Scale.	
CO2 Interpret the use of microorganisms in Industrial Scale.	
CO3 Applications of microbes in biotransformation, therapeutic	and industrial biotechnology
CO4 Explain Intellectual Property Rights and protection	
CO5 Explicate patent agreements	

Offered by: Microbiology

Course Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter
I	Microbial biotechnology : Scope and its applications in human therapeutics, agriculture (Biofertilizers, PGPR, Mycorrhizae), environmental, and food technology. Use of prokaryotic and eukaryotic microorganisms in biotechnological applications. Genetically engineered microbes for industrial application: Bacteria and yeast.	1	2
	Instructional Hours		15
п	Therapeutic and Industrial Biotechnology Recombinant microbial production processes in pharmaceutical industries - Streptokinase, recombinant vaccines (Hepatitis B vaccine). Microbial polysaccharides and polyesters, Microbial production of bio-pesticides, bioplastics, Microbial biosensors.	2	11,12
	Instructional Hours		15
III	Applications of Microbes in Biotransformations Microbial based transformation of steroids and sterols, Bio- catalytic processes and their industrial applications: Production of high fructose syrup and production of cocoa butter substitute.	3	1
	Instructional Hours		15
IV	Introduction to Intellectual Property: Patents, Types, Trademarks, Copyright & Related Rights, Industrial Design and Rights, Traditional Knowledge, Geographical Indications- importance of IPR – patentable and non patentables – patenting life – legal protection of biotechnological inventions – World Intellectual Property Rights Organization (WIPO).	4	1
	Instructional Hours		15
V	Grant of Patent and Patenting Authorities: Types of patent applications: Ordinary, PCT, Conventional, Divisional and Patent of Addition; An introduction to Patent Filing Procedures; Patent licensing and agreement; Patent infringement- meaning, scope, litigation, case studies, Rights and Duties of patent owner.	4	4,5
	Instructional Hours		15
	Total Hours		75

NASC 2021

Text Book(s):

- 1. Alexander N. Glazer and Hiroshi Nikaido **Microbial Biotechnology Fundamentals of applied Microbiology**, Cambridge University Press 2nd edition 2007.
- 2. Bernard R. Glick, Jack J. Pasternak and Cheryl L. Patten, **Molecular Biotechnology Principles and applications of recombinant DNA**. ASM Press 4th edition, 2010.
- 3. Colin Ratledge and Bjon Kristiansen, **Basic Biotechnology**, Cambridge University Press, 2nd Edition 2013.
- 4. Deepa Goel and Shomini Parashar, **IPR, Biosafety and Bioethics**, Pearson Publication 2013.

Unit I: Text Book 1, Chapter 2: 45 - 85. Text Book 2, Chapter 13: 501-545

Unit II : Text Book 2, Chapter 5: 169 - 199. Chapter 8: 267-295.

Unit III: Text Book 3, Chapter 24: 549 - 578.

Unit IV: Text Book 4, Chapter 1: 1 - 20, Chapter 3: 47 – 57.

Unit V : Text Book 4, Chapter 4: 62 - 72, Chapter 5: 84 – 99.

Reference Book(s):

- 1. Prescott, Harley and Klein's **Microbiology** by Willey JM, Sherwood LM, Woolverton CJ 9th edition, Mc Graw Hill Publishers. 2014.
- Peter F. Stanbury, Allan Whitaker, Stephen J. Hall. Principles of Fermentation Technology, Butterworth-Heinemann – Elsevier. 3rd Edition 2017.
- 3. Kankanala C, **Genetic Patent Law & Strategy**, 1st Edition, Manupatra Information Solution Pvt. Ltd. New Delhi. 2007.
- 4. Singh K K. Biotechnology and Intellectual Property Rights: Legal and Social Implications, Springer India. 2015.
- 5. Senthil Kumar Sadhasivam and Mohammed Jaabir, M. S. **IPR, Biosafety and biotechnology Management**. Jasen Publications, Tiruchirappalli, India. 2008.
- 6. <u>Intellectual Property Rights and Biological Resources (wupperinst.org)</u>
- 7. <u>9.4 Intellectual Property Rights.pdf (icsi.edu)</u>

1 ools for Assessment (50 Marks)									
CIA I	CIA II	CIA III	Assignment	Quiz	Seminar	Total			
8	8	10	8	8	8	50			

 $T_{-1} = 1 = f_{-1} + A_{-1} = --- + (f_{0} + f_{-1})$

Mapping

The phase of the p													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Μ	Н	М	Н	Н	Н	L	L	Н
CO2	Н	Н	Н	L	Μ	Н	Н	М	Н	Н	Н	L	Н
CO3	Н	Н	L	Н	Н	Н	М	Н	Н	Н	Н	Н	Н
CO4	Н	Н	Н	Μ	Μ	Н	М	Н	L	М	М	L	Н
CO5	Н	Н	Н	Μ	Μ	Н	М	Н	Н	М	L	Н	Н

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
Dine	Chun 1 -2, 93/1	Nort.	AS
	DIM. MANCAUNS	CONVENDING	3 0 MAR 2022

Instructional Hours/Week: 5

Course Code		Title					
21PGMBC311	Paper XI – Biostatistics	Paper XI – Biostatistics and Research Methodology					
Semester: III	Credits: 4	CIA : 50 Marks	ESE: 50 Marks				

Course Objective:

Students can have knowledge about designing the research project and various statistical applications in Research

Course Outcome:

On successful completion of this course the students will be able to

CO 1	Know about various statistical applications in research.
CO 2	Get the knowledge of Plagiarism and research ethics
CO 3	Understand the knowledge of project design, processing and presentation of research data
CO 4	Understand the basic ideas of significant test and its hypothesis
CO 5	Analyze the types and significance of research

Offered by: Microbiology

Course Content

Text Unit Description Chapter Book **Definition** – Scope of Biostatistics, Probability analysis, Variables in Biology-Collection, Classification and Tabulation Ι 2 1-3, 5-6 of data. Graphical and diagrammatical representation -Scale diagram - Histogram- frequency curve Instructional Hours 15 Measures of central tendency - Arithmetic mean, Median, Mode. Calculation of Mean, median, Mode in series of Π individual observations, discrete series, continuous, open end 2 7-8 classes, measure of dispersion, standard deviation, standard error. Instructional Hours 15 Simple correlation coefficient, correlation regression- simple 2 Ш 10,11 and linear Instructional Hours 15 Basic ideas of significant test-Hypothesis testing, Level of IV significant test, test based on studies-t-test- chi square, 2 3-5 Goodness of fit. Instructional Hours 15 **Research Methodology** – Types of Research- Significance of Research. Research Problem - Selection of research problem -V 1 1-3 Formulation of research objectives - project design - review of literature writing Instructional Hours 15 Total Hours 75

Text Book(s):

- 1. Gupta.S.P. Statistical Methods. Sulthan Chand and Sons. 2012.
- 2. Kothari. **Research Methodology: Methods and Techniques**. New Age International Pubishers. New Delhi. 2004.

Unit I: Text Book 2 Chapter 1-3,5-6:27-39 Unit II:Text Book 2 Chapter 7-8: 79-118 Unit III: Text Book 2 Chapter 10-11: 175-199

Unit IV: Text Book 2 Chapter 3-5: 201-262

Unit V: Text Book 1 Chapter 1-3: 289-386

Reference Book(s):

- 1. S.C. Guptha and V. K. Kapoor. **Fundamentals of Mathematical Statistics**. Sulthan Chand and Sons. 11th Edition. 2002.
- 2. Sokal, R.R. and Rohlf, F.J. An **Introduction to Biostatistics**. W.H. Freeman and Company.1987.
- 3. <u>Research Methodology (cusb.ac.in)</u>
- 4. Biostatistics & Research Methodology--PharmD Notes ~ Revolution PharmD

	Tools for Assessment (50 Marks)										
CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total					
8	8	10	8	8	8	50					

Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Η	Н	L	М	М	Μ	L	Н	L	М	L	L	Н
CO2	М	Η	М	L	Н	Н	Μ	Н	L	L	L	L	Н
CO3	М	Η	Н	L	Н	Н	Μ	Н	L	L	L	L	Н
CO4	Η	L	Н	М	М	Μ	Μ	Μ	L	L	L	L	Н
CO5	Н	Н	М	L	Н	Н	L	Н	L	Н	L	L	Н

H – High; M- Medium; L - Low

Course Designed by	Verified by HOD	Checked by	Approved by
DHONDLAKSHMI	1. CHANDROPUSIPAM	The state of the state	A
		CDC	3 D MAR L

Course Code	Title						
21PGMBC312	Core Paper XII- Microbial Food Technology						
Semester III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks				

Course Objective:

Students will gain the knowledge of various types of food spoilage and an understanding the principles of food processing and to improve the food quality for the general public. They will

come to know the role of ISO and FAO etc.

Course Outcome:

On successful completion of this course the students will be able to

CO 1	To learn about the food and spoilage mechanism
CO 2	Gain knowledge about the food borne diseases and dairy products
CO 3	Understand the collection and processing of food items
CO 4	Know about the use of microorganisms in food industries for public health benefits.
CO 5	Gain knowledge on various control agencies for food products

Offered by: Microbiology

	e Content Instru	ctional Hours/	Week: 5
Unit	Description	Text Book	Chapter
	 The Scope of Food Microbiology: Microorganism and food, Food preservation, Food safety. Microbial growth- Intrinsic factors, Nutrient content, P^H, antimicrobial barrier and constituents, Extrinsic factors: relative 	1	1, 3
Ι	humidity, temperature, Gaseous atmosphere. Microbiology of primary food commodities: Spoilage, Spoilage of meat, Structure and composition, Spoilage of fresh meat, Spoilage of fish, structure and composition, spoilage of fresh fish.	1	4, 5
	Instructional Hours		15
П	 Food borne diseases- Introduction to Foodborne Pathogens, Host invasion, Pathogenesis. Staphylococcal Gastero enteritis, Habitat, distribution, nutritional requirement and growth, Prevention. Fermented milk products –Dairy products, Milk biota, Cheese, Butter. Health benefits of fermented milk, Anti-cancer effect, probiotics. Botulism, Salmonellosis, Gastro entero enteritis, Shigellosis and Yersiniosis. 	2 2	22, 7 26
	Instructional Hours		15
ш	 Microbiology of food preservation: Preservation by use of High temperature, Low temperature, Canning, Drying, Radiation and Food additives. Food preservation- Heat processing – Pasteurization, Appertization, Quantifying Thermal Death of microorganism D values, Aseptic packaging methods. Methods for the Microbiological Examination of Foods: Indicator organism, Direct examination, Rapid Methods for the Detection of Specific Organisms and Toxins, Laboratory Accreditation 	1 1	3, 4 10
	Instructional Hours		15

NASC 2021

	Food Microbiology and Public Health: Food Hazards,		
	Significance of Foodborne Disease, Risk Factors Associated	3	6
IV	with Foodborne Illness, The Alimentary Tract : Its Function		
1 V	and Microflora.	3	4
	Chemical Preservatives: Nitrite, Sulfur Dioxide, 'Natural'	5	
	Food Preservatives, Control of Water Activity.		

	Instructional Hours				
V	Controlling the Microbiological Quality of Foods:The Hazard Analysis and Critical Control Point (HACCP)Protocols for CCP Deviations, Record keeping, Risk analysis.Quality, Codes of Good Manufacturing Practice.	3	11		
Instructional Hours					
Total Hours					

1. M.R. Adams and M.O. Moss, **Food Microbiology.** 2nd Edition. Royal society of chemistry. Thomas Graham House, science park, Cambridge. 2005.

2. James M Jay. **Modern food microbiology**.6th Edition. Aspen publishers, Maryland.2000.

3. Martin R. Adams and Maurice O. Moss. **Food Microbiology**, 3rd edition, Royal society of chemistry. Thomas Graham House, Science Park, Cambridge. 2008.

Unit: 1: Text book: 1- Chapter:1 pp 1-4

Chapter:3 pp 21-51 Chapter:4 pp 93-109 Chapter:5 pp 133-138 Unit: 2: Text book: 2- Chapter:22 pp 423-427 Chapter:7 pp 123-128 Chapter:26 pp 511-528 Unit: 3: Text book: 1- Chapter:3 pp 63 - 80 Chapter:4 pp 93 109 Chapter:10 pp 370-388,394 Unit: 4: Text book: 3-Chapter:4 pp 90-112 Chapter:6 pp 158-172 Unit: 5: Text book: 3- Chapter:11 pp 396,425-434

Reference Book(s):

- 1. Jay, J.M. Modern Food Microbiology., Van Nostra and Rainhokdd Co. 4th Edition. 1991.
- 2. Roday. S. Food Hygeine and Sanitation. Tata Mcgraw Hill Publications, 1998.

1 OOIS IOF ASSessment (SU Marks)								
CIA I	CIA II	CIA III	Assignment	Quiz	Seminar	Total		
8	8	10	8	8	8	50		

Tools for Assessment (50 Marks)

Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	L	М	Μ	Н	Н	М	Н	М	L	L	М
CO2	Μ	Μ	L	Η	L	Н	Μ	Н	Н	Н	L	Н	М
CO3	Μ	Н	М	Н	М	Н	Н	Н	Н	М	L	Н	L
CO4	L	L	Η	Η	Μ	Н	Н	М	М	Н	L	L	L
CO5	Н	Н	L	М	Н	Н	Н	М	L	Н	L	L	L

H-High; M-Medium; L-Low

		Checked by	Approved by
Course Designed by	Verified by HOD	Cheener	
mart.	(1) 2 3°	VIV-197	A
Corport	(on m The grandera)	m to Seturina par	1 9 8 41 0 200
		CONVENCE	JU MAR 202

Course Code	Title								
21PGMBQ303	Practical III -Lab in Environment, Agriculture and Food Microbiology								
Semester: III	Credits: 4	CIA - 50 Marks	ESE - 50 Marks						

Course Objective:

Students get hands on experience on the basic techniques on area Environment, Agriculture and Food Microbiology

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Students will learn sampling of microbes from air and get to study new organisms apart from standard preserved cultures
CO2	The knowledge of isolation of various physiological groups of bacteria from soil will help them in screening bacteria for future research activities.
CO3	They will learn to carry out routine analysis of potable water and rapid detection of <i>E coli</i> by MPN technique.
CO4	The students will have a fair knowledge of food spoilage and preservation techniques used in the food industry.
CO5	They will be competent to take up the role of microbiologists in the Food and Dairy Industry.

Offered by: Microbiology

Course C	Content Instructional Hours / Week: 5
S. No.	Experiment
1.	Bioassay of Bti and Bt
2.	Comparison of microflora in Bt-treated and chemical pesticide-treated Soils
3.	Isolation and Enumeration of soil microbes by plate culture methods.
4.	Isolation of free-living nitrogen fixing bacteria
5.	Isolation of Rhizobium from root nodules of leguminous plants
6.	Isolation of phosphate solubilizing microorganisms
7.	Bacteriological examination of air
8.	Bacteriological examination of water
9.	BOD and COD determination
10.	Enumeration of microorganisms in foods
11.	Collection, sampling and microbiological analysis of food materials from local vendors.
12.	Study of microflora in fermented foods - Isolation of microbes from yoghurt, curd.
13.	Dairy Microbiology - Direct microscopic count and standard plate count
14.	Methylene blue reductase test
15.	Methylene blue reductase test
16.	Production of wine
17.	Demonstration of microbial succession
18.	Demonstration of microbial antagonism
19.	Total Hours : 75

NASC 2021

Text Book(s):

- 1. Rajan, **Text book of Experimental Procedures in Life Sciences**. 2019.
- 2. Shalini Sehgal. A Laboratory Manual of Food Analysis. 2020.
- 3. Subba Rao N. S. Agricultural Microbiology. Medtech. 3rd Edition, 2020.
- 4. Rumpa Saha and Shukla Das. **Microbiology Practical manual.** Kindle edition.2022.

5. Richard. K. Robinson. Dairy Microbiology Handbook. 3rd Edition. A John Wiley & Sons,

Inc., Publication. 2002.

Reference Book(s):

1. Dubey RC and Maheshwari DK., **Practical Microbiology**. S Chand and Co. Ltd., New Delhi, 2002.

- 2. Gunasegaram.P, Laboratory Manual in Microbiology. New Age International. 2007.
- 3. <u>https://microbenotes.com/fields-of-microbiology/</u>

4. <u>https://bio.libretexts.org/Bookshelves/Microbiology/Book%3A_Microbiology_(Boundless)/</u>

<u>1%3A_Introduction_to_Microbiology/1.3%3A_The_Science_of_Microbiology/1.3B_Applied_Microbiology</u>

Tools for Assessment (50 Marks)

Labora	tory Performa	nce				
Level of engagement in lab	Preparation	Result	Test I	Test II	Observation notebook	Total
8	8	8	10	10	6	50

Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Μ	L	L	Μ	Η	Η	Μ	Η	Η	Н	L	L	М
CO2	Η	Μ	L	Н	Μ	Μ	L	Μ	Η	Н	L	L	L
CO3	L	L	L	Η	Μ	Μ	Μ	L	Η	М	L	L	L
CO4	Η	Μ	Μ	Н	Μ	Н	Η	Η	Η	L	L	L	L
CO5	Н	Н	Н	Н	Н	Н	Η	Н	М	М	L	L	М

H-High; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
(affind	Decum Jul 30 13/2	the start	AS
(Dr. M. Thenatore)	Convener	20 MAR 20

SEMESTER IV

Course Code	Title								
21PGMBC413	Paper XIII – Medical Microbiology								
Semester: IV	Credits: 4	CIA :50 Marks	ESE:50 Marks						

Course Objective:

This course is intended to provide the student with a foundation in medical microbiology. Concepts in bacteriology, mycology and parasitology will be explored.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Understand the Infection, types of infection, Host-parasite relationship and Micro flora of human body.
CO2	Gain knowledge on nature of Antimicrobial agents.
CO3	Understand the different concepts of control agents for microorganisms.
CO4	Acquire knowledge on parasitology morphology and life cycle.
CO5	Learn the techniques to control the pathogenicity and laboratory diagnosis of fungi.

Offered by: Microbiology

Course (Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter
I	Infection : types of infection, sources of infection, reservoirs and vehicles of infection, predisposing factors. Host-parasite relationship : governing the infection and establishment of disease, factors affecting virulence. Normal Micro flora of human body : normal flora of skin, respiratory, gastrointestinal, genital tract, role of resident flora, concept of probiotics. Mode of spread of infection; Respiratory, skin, wound & burn infection, venereal infections, alimentary tract infection, blood born infection and nosocomial infection.	1	9,10
	Instructional Hours		15
п	Antimicrobial agents: Histroy, Antibiotics, Antifungal and Antivirals (common drugs, their spectrum and mode of action). Methodologies for testing of antibacterial, antifungal, and antiviral drugs (in vivo and in vitro infectivity models), mechanism drug resistance. Clinical studies: Phase I, phase II, phase III and phase IV of clinical trials –Objectives, Conduct of trials, Outcome of trials.	1	28
	Instructional Hours		15
ш	Bacteriology: Gram positive organisms - Morphology, cultural characteristics, pathogenicity and laboratory diagnosis of <i>Staphylococcus aureus</i> , <i>Streptococccus pyogenes</i> , <i>Bacillus anthracis</i> , , <i>Mycobacterium tuberculosis</i> . Gram negative organisms E. coli, Salmonella typhi, Vibrio cholerae, Pseudomonas aeruginosa, Neiserria gonorrhoeae	2	22-41
	Instructional Hours		15
IV	Parasitology: Morphology, Life cycle, Pathogenicity and laboratory diagnosis of <i>Entamoeba histolytica</i> , <i>Trichomonas vaginalis</i> , <i>Plasmodium malariae</i> , <i>Taenia solium</i> , <i>Enterobius vermiculari</i> , <i>Ascaris lumbricoides</i> .	3	3-18
	Instructional Hours		15
V	Mycology: Morphology, Pathogenicity and laboratory diagnosis of <i>Candida albicans</i> , <i>Cryptococcus neoformans</i> , <i>Aspergillosis</i> , <i>Histoplasma capsulatum</i> .	4	8-15

Instructional Hours	15
Total Hours	75

Text Book(s):

Brooks, G. F., Jawetz, Melnick and Adelbergs Medical Microbiology. New 1.

York.: McGraw-Hill Medical.2007.

2. Paniker, C. K., and Ananthanarayan, R. Ananthanarayan and Panikers, Textbook

of Microbiology. Himayatnagar, Hyderabad: Orient Longman.2005.

Paniker, C. K., Textbook of Medical Parasitology. New Delhi: Jaypee Brothers 3.

Medical (P).2007.

4. Anaissie, E. J., Clinical Mycology. Churchill Livingstone: Elsevier.2009.

Unit I : Text Book 1, Chapter 9, 10:149-173 Unit II: Text Book 1, Chapter 28: 371-379 Unit III : Text Book 2, Chapter 22-41:192- 395 Unit IV : Text Book 3, Chapter 3-18 :14-189 Unit V : Text Book4, Chapter 8-15 :199-369

Reference Book(s):

Patricia, M.T. Bailey and Scott's **Diagnostic Microbiology**, 13th Edition, Mosby, Inc. 1. Publishers, China. 2014.

2. Patrick R.Murray, Ken.S.Rosenthal, George.S.Kobayashi, Michael A.Ptaller Medical Microbiology,, 3rd Edition, C.V. Mosby Co. 1998.

CIA III

Η

Η

Μ

Η

3. https://microbiologyinfo.com/

CIA I

Μ

Η

CO4

CO5

Μ

Η

CIA II

(Online)

L

Μ

		8		8	10)	8		8	8	50	-	
		L	I			I					1		
Mapping													
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	L	Μ	Н	Н	Н	Η	Н	Н	Н	Н	Н
CO2	М	Н	Μ	L	Н	Н	М	Η	L	М	Н	Н	М
CO3	Н	Н	Μ	L	Н	Н	Н	Η	Н	Н	Н	Н	М

Μ

Η

Η

Η

Tools for Assessment (50 Marks)

Assignment

Seminar

Η

Η

Quiz

Η

Η

Total

L

Μ

Η

L

Η

Μ

Ľ.

H - High; M - Medium; L – Low

Μ

Μ

		Checked by	Approved by
Course Designed by	Verified by HOD	The second	
Course no and	Obume 12/3/2	NH -	
3113/12		Convenor	HAILE A MAD 2000
Dr.M.TDANGO	D. N. THANGAVEL	CDC	JO MAR LUL

NASC | 2021

NEHRU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution affiliated to Bharathiar University) (Reaccredited with "A" Grade by NAAC, ISO 9001:2015 & 14001:2004 Certified Recognized by UGC with 2(f) &12(B), Under Star College Scheme by DBT, Govt. of India) Nehru Gardens, Thirumalayampalayam, Coimbatore - 641 105, Tamil Nadu.

OFFICE OF CONTROLLER OF EXAMINATIONS

GUIDELINES FOR PREPARATION OF PROJECT REPORT

1. ARRANGEMENT OF CONTENTS:

The sequence in which the project report material should be arranged and bound is as follows:

- 1. Cover Page & Title Page
- 2. Bonafide Certificate
- 3. Abstract
- 4. Table of Contents
- 5. List of Tables
- 6. List of Figures
- 7. List of Symbols, Abbreviations
- 8. Chapters
- 9. Appendices
- 10. References

The table and figures shall be introduced in the appropriate places.

2. PAGE DIMENSION AND SIZE OF THE PROJECT REPORT:

(a) The size of the project report for undergraduate and post graduate degree should contain a minimum of 40 and 60 pages of content respectively. The pages will be counted from the first page of Chapter I. The dimension of the project report should be in A4 size.

(b) The project report should be bound using flexible cover of thick art paper. The cover should be **printed in black letters** and the text for printing should be identical.

(c) Page Numbering

All page numbers (whether it is in Roman or Arabic numbers) should be typed without punctuation on the central bottom of each page. The preliminary pages of the reports (such as Title page, Acknowledgement, Table of Contents, etc.) should be numbered in lower case Roman numerals. The title page will be numbered as (i) but this should not be typed. The page immediately following the title page shall be numbered as (ii) and it should appear at the top right hand corner as already specified. Pages of main text, starting with Chapter 1 should be consecutively numbered using Arabic numerals.

3. PREPARATION FORMAT:

Cover Page & Title Page – A specimen copy of the Cover page & Title page of the project report are given in **Appendix 1.**

Bonafide Certificate – The Bonafide Certificate shall be in **double line spacing using Font Style Times New Roman and Font Size 14**, as per the format in **Appendix 2**.

The certificate shall carry the supervisor's signature and shall be followed by the supervisor's name, academic designation (not any other responsibilities of administrative nature) and Department where the supervisor has guided the student. The term **"SUPERVISOR"** must be typed in capital letters between the supervisor's name and academic designation.

Abstract – Abstract should be one page synopsis of the project report typed double line spacing, Font Style Times New Roman and Font Size 13.

Table of Contents – The table of contents should list all material following it as well as the Abstract which precedes it. The Title page and Bonafide Certificate will not find a place among the items listed in the Table of Contents. **One and a half** spacing should be adopted for typing the matter under this head.

List of Tables – The list should use exactly the same captions as they appear above the tables in the text. **One and a half** spacing should be adopted for typing the matter under this head.

List of Figures – The list should use exactly the same captions as they appear below the figures in the text. **One and a half** spacing should be adopted for typing the matter under this head.

3.7. Table and figures - By the word Table, is meant tabulated numerical data in the body of the project report as well as in the appendices. All other non- verbal materials used in the body of the project work and appendices such as charts, graphs, maps, photographs and diagrams may be designated as figures.

List of Symbols, Abbreviations– One and a half spacing should be adopted for typing the matter under this head. Standard symbols, abbreviations etc. should be used.

Chapters – The chapters may be broadly divided into 3 parts

- (i) Introductory chapter,
- (ii) Chapters developing the main theme of the project work
- (iii) Conclusions and scope

The introductory chapter will have sections covering a general introduction and importance of the research project.

The main text will be divided into several chapters and each chapter may be further divided into several divisions and sub-divisions.

- Each chapter should be given an appropriate title.
- Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited.

Appendices – Appendices are provided to give supplementary information, which if included in the main text may serve as a distraction.

- Appendices should be numbered using Arabic numerals, e.g. Appendix
 1, Appendix 2, etc.
- Appendices, Tables and References appearing in appendices should be numbered and referred at appropriate places just as in the case of Chapters.
- Appendices shall carry the title of the work reported and the same title shall be made in the contents page also.

List of References –The listing of references should be typed 4 spaces below the heading "REFERENCES" in alphabetical order in single spacing left – justified. The reference material should be listed in the alphabetical order of the first author. The name of the author / authors should be immediately followed by the year and other details.

(i) If more than one paper by the same first author and same year of publications, the year of citation will be followed by a, b etc to differentiate them.

- (ii) While citing the paper in the text, the name of the first author and year alone must be cited. e.g Samson (2004) or Jeyaraj (2007a). The reference numbers should not be used in the text of the paper
- (iii) A paper, a monograph or a book may be designated by the name of the first author followed by the year of publication, placed inside brackets at the appropriate places in the Thesis.

4. TYPING INSTRUCTIONS:

The impression on the typed copies should be black in colour.

One and a half spacing should be used for typing the general text. The general text shall be typed in the Font style "Times New Roman" and Font size 13.

APPENDIX 1

TITLE <1.5 line spacing>

a project report submitted by

 <Italic>

NAME OF THE STUDENT (REGISTER NUMBER)

in partial fulfillment for the award of the degree

 <Italic> <1.5 line spacing>

in

NAME OF THE PROGRAMME

under the supervision of <Italic>

NAME OF THE SUPERVISOR

NAME OF THE DEPARTMENT

NEHRU ARTS AND SCIENCE COLLEGE

(An Autonomous Institution affiliated to Bharathiar University) (Reaccredited with "A" Grade by NAAC, ISO 9001:2015 & 14001:2004 Certified Recognized by UGC with 2(f) &12(B), Under Star College Scheme by DBT, Govt. of India) Nehru Gardens, Thirumalayampalayam, Coimbatore - 641 105, Tamil Nadu.

MONTH & YEAR

APPENDIX 2 (A typical specimen of Bonafide Certificate)

BONAFIDE CERTIFICATE

This is to certify that the project report entitled "......TITLE OF THE PROJECT......." is the bonafide work of "......NAME OF THE CANDIDATE(S) WITH REGISTER NUMBER......" who carried out the project work under my supervision.

<<Signature of the Head of the Department>> SIGNATURE <<Name>> <<size -16> <<Signature of the Supervisor>> SIGNATURE <<Name>> <<size -16>

HEAD OF THE DEPARTMENT

<<Academic Designation>>

<<Department>>

SUPERVISOR

<<Academic Designation>> <<<Department>>

Submitted for the Viva Voce held on

Internal Examiner

External Examiner

EVALUATION PROCESS

Review – I has to be conducted during the Last week of December

Review – II has to be conducted during the Last week of January

Review - III has to be conducted during the Last week of February

Document, Preparation and Implementation has to be done during the First week of March

Viva-Voce examination will be conducted at the end of the semester by both Internal (Respective Guides) and External Examiners, after duly verifying the Project Report available in the College.

Course Code	Title				
21PGMBQ404	Practical IV – Lab in Medical Microbiology				
Semester: IV	Credits: 4	CIA :50 Marks	ESE:50 Marks		

Course Objective:

The general characteristics of bacteria, protozoa, yeasts, molds, and viruses are used to understand the role of microorganisms in human health and disease. The interactions between the host and the microorganisms are emphasized as well as the physical and chemical methods of control.

Course Outcomes:

On successful completion of this course the students will be able to

C01	Acquire knowledge on basic principles of medical microbiology and infectious
	disease.
CO2	Understand infectious disease transmission, and the role of the human body's
02	normal microflora.
CO2	Understand the different conceptual basis for pathogenic microorganisms and the
CO3	mechanisms by which they cause disease in the human body.
CO4	Gain knowledge on relationship of this infection and symptoms and the
CO4	accompanying pathology.
CO5	Learn the techniques for pathogenic mycology and the mechanisms

Offered by: Microbiology

Course Content

Instructional Hours / Week: 5

S.No	Experiments
1.	Demonstration normal microbial flora of skin, mouth and throat
2.	Isolation and identification of Staphylococcal species using suitable media, staining techniques and biochemical tests
3.	Identification of bacterial species belonging to Enterobacteriaceae family using suitable biochemical tests (E. coli, Proteus, Pseudomonas, , Klebsiella)
4.	Microbiological analysis of urine specimens
5.	To determine antibiotic sensitivity for Gram negative and Gram positive bacteria by disc diffusion method
6.	To determine Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal concentration of an antibiotic for test bacteria.
7.	Rapid Screening test for HIV – Tridot ELISA
8.	Serodiagnosis of HBV
9.	Serodiagnosis of HIV
10.	Cultivation of Viruses by Embryonated Egg Inoculation Method - Demo
11.	RAPD analysis
12.	Observation of parasites – Entamoeba, Plasmodium, Ascaris, Taenia
	Total hours : 75

Text Books

- 1. Dubey, R.C and Maheswari, D.K. **Practical Microbiology** S. Chand Ltd.2002.
- 2. Cappuccino, J. G., Sherman, S., Microbiology. A Laboratory Manual, Benjamin.

Cummings Publishing Company. 2002.

Reference Book(s):

1. Murray PR, Baron EJ, Pfaller MA, Tenover PC and Yolken RH (Eds): **Manual of Clinical Microbiology**, 6th edition, American Society for Microbiology, Washington, DC 2005.

- 2. Collee J G Mackie and McCartney **Practical Medical Microbiology** 14th edition. 1999.
- 3. https://www.cdc.gov/nchs/data/nhanes/nhanes_03_04/lab.pdf

Tools for Assessment (50 Marks)

Laboratory Performance						
Level of engagement in lab	Preparation	Result	Test I	Test II	Observation notebook	Total
8	8	8	10	10	6	50

Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Μ	Η	Μ	Н	Η	Н	Н	Н	Н	Н
CO2	Н	Н	Η	L	Н	Н	Н	Н	L	М	Н	Н	М
CO3	Н	Н	Η	L	Μ	Н	Н	Η	Н	Н	Н	Н	М
CO4	Н	M	Н	М	Н	М	Н	Н	Н	Н	М	Н	Н
CO5	Н	Н	М	М	Н	Н	М	Н	Н	М	М	L	М

H - High; M - Medium; L - Low

Course Designed	by Verified by HOD	Checked by	Approved by
course passi	Come Parlain	Ver spr	A
	Dr.N. THANGAVEL	Dr 4 & CDC	3 0 MAR 2022
T.M. THANGAVE	DI		

ELECTIVES

NASC | 2021

Course Code	Title			
21PGMBE101	Elective Paper I – Group A – Principles of Quality Assurance in Fo			
Semester : I	Credits : 4	CIA: 50 Marks	ESE: 50 Marks	

Course Objective:

To make the students to gain knowledge on techniques commonly performed in a food industry.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Develop knowledge on food hazards.
CO2	Improve management of quality assurance in food industry.
CO3	Create step by step operating procedures and work on instructions.
CO4	Understand food safety and good manufacturing practices.
CO5	Gain knowledge on food safety microbial standards and applications.

Offered by: Department of Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
I	Food Safety and Hazards in Food: Definition, Biological hazards in foods - Pathogenic bacteria, viruses, parasites. Chemical hazards in foods - Permitted food additives, Naturally occurring harmful compounds, Unavoidable contaminants, Agricultural residues, Industrial contaminants, Chemical residues, Prohibited chemicals, Food allergens. Physical hazards in foods - Broken glass, Plastic, Metal pieces, Wood pieces, Stones, Personal articles.	1	2
	Instructiona	al Hours	15
п	Quality Assurance : Theories and Applications, Functions of a Quality Assurance Program, Careers in Quality Assurance, QA Responsibilities and Operational Interactions, Need for and Roles of QA, Organization of a QA Program, QA Personnel, QA Audits, Product Quality Audits, HACCP Audits, QA Documentation System, Work Instructions, Records, HACCP Program Documents.	2	3
	Instructiona	al Hours	15
ш	Manufacturing Audits - Control of Processing Operations: Objectives, elements, education, training, Process control documentation, Unit Operations in the Food Industry - Materials Handling, cleaning, separation, disintegration, pumping, mixing, heating, cooling, evaporating, drying, packaging. Product manufacturing audit and HACCP analysis.	2	6
	Instructiona	al Hours	15
IV	Good Manufacturing Practice Audits : Food Plant Sanitary Practices, Value of a Planned Sanitation Program, Quality Assurance and Sanitation, Food Plant Sanitation Management, Employee Hygiene and Sanitary Handling of Food, Sanitation and Housekeeping, Pest Control in Food Processing Plants, Sanitation Laws and Regulations, The Sanitation/GMP Audit.	2	7
	Instructiona	al Hours	15

V	HACCP:Concept, importance, advantages, guidelines, training, program development, principles, Implementation and maintenance of HACCP program, regulatory aspects of HACCP, sanitation and the HACCP concept.2	9
	Instructional Hour	s 15
	Total Hour	s 75

Text Book(s):

- 1. Inteaz Alli. Food Quality Assurance: Principles and Practices, CRC Press, 2003.
- 2. Andres Vasconcellos J., Quality Assurance for the Food Industry: A Practical Approach. CRC Press, 2003.

Unit I	:	Text Book 1 Chapter 2: 27-39
Unit II	:	Text Book 2 Chapter 3: 79-118
Unit III	:	Text Book 2 Chapter 6: 175-199
Unit IV	:	Text Book 2 Chapter 7: 201-262
Unit V	:	Text Book 2 Chapter 9: 289-386

Reference Book(s):

- 1. JayJM, Loessner MJ, Golden DA. **Modern Food Microbiology**, 7th Edition. Springer, 2005.
- 2. Rosamund M. Baird, Norman A. Hodges and Sephen P. Denyer. Handbook of Microbiological Quality Control, CRC Press, 2000.
- 3. <u>https://www.academia.edu/41208822/Food_Quality_Management_Notes.</u>
- 4. <u>http://foodtechnotes.com/category/quality-control-and-quality-assurance-and-tqm/</u>.

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Н	Н	Н	Н	М	Н	Н	L	L	Н
CO2	Н	Н	М	М	Н	Н	Н	Н	Н	Н	L	L	Н
CO3	Н	Н	Н	Н	Н	Н	М	М	М	М	М	L	Н
CO4	Н	Н	М	Н	Н	Н	Н	Н	М	М	Н	М	Н
CO5	Н	Н	М	М	Н	Н	М	Н	М	М	Н	М	Н

H - High; M - Medium; L - Low

Course Designed by	Verified by HOD	Checked by	Approved by
Sable	(On m Hanchen)	When a second in a per	3 0 MAR 2022

Course Code	Title					
21PGMBE102	Elective Paper I – Group B – Diagnostic Mycology					
Semester : I	Credits : 4	CIA: 50 Marks	ESE: 50 Marks			

Course Objective:

To assimilate knowledge across diagnostic procedures in mycology discipline.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Develop knowledge and awareness of the basic principles and concepts of fungal diseases.
CO2	Interpret the pathogenesis and lab diagnosis of yeast and mould infections.
CO3	Use research-based knowledge on fungal skin infections
CO4	Understand the fungi, fungal toxins and antifungal agents
CO5	Apply the knowledge of diagnosis of mycotic infections

Offered by: Department of Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
Ι	Laboratory aspects of diagnostic mycology: Epidemiology of systemic fungal diseases, Medically important fungi, Opportunistic Fungi, Fungal Diseases, Superficial mycoses Subcutaneous mycoses Cutaneous mycoses, Systemic Antifungal drugs.	1	1,2
	Instructiona	l Hours	15
II	Pathogenesis and Laboratory Diagnosis of Mycotic Infections:Yeasts and Moulds: Candidiasis, Cryptococcosis, Trichosporon andOther yeast like infections, Aspergillosis, Zygomycoses,Histoplasmosis, Blastomycosis, Coccidioidomycosis,paracoccidioido mycoses, Sporotrichosis, Penicilliosis	1	3, 4, 5
	Instructiona	l Hours	15
ш	Pathogenesis and Laboratory Diagnosis of Mycotic Infections : Skin and subcutaneous tissues: Superficial cutaneous fungal infections, Eumycetoma, Chromoblastomycosis, Pneumocytosis	1	6,7
	Instructiona	l Hours	15
IV	Fungal Toxins and Drugs : Morphology, taxonomy, classification of fungi, recovery of fungi from clinical specimens. Dermatophytes and agents of superficial mycoses, Mycotoxins, Antifungal agents testing and quality control. Newer methods in diagnostic Mycology, Immunity to fungal infections.	2, 3	1, 3,4,5,6
	Instructiona	l Hours	15
	Isolation and Identification of Fungi (Laboratory Diagnosis) : Selection, collection and transportation of specimens Skin, Hair, Nail, Mucous membranes, Ear, eye, Corneal ulcer, Pus, Blood, Biopsy, Sputum, Urine, Vaginal and Cervical swab, Stool samples,	3	3
V	Plural and peritonial fluid, Superficial, sub-cutanious and cutanious samples. Smear Preparation: KOH Preparation, 20% KOH with 20% Glycerol, KOH – DMSO (DimethyalSulphoxide) 100% Lactophenol Cotton Blue, India ink preparation.		J
• •	Plural and peritonial fluid, Superficial, sub-cutanious and cutanious samples. Smear Preparation: KOH Preparation, 20% KOH with 20% Glycerol, KOH – DMSO (DimethyalSulphoxide) 100% Lactophenol Cotton Blue, India ink preparation. Instructiona		<u> </u>

Text Book(s):

- 1. William, E Dismukes, Peter G Pappas, Jack D Sobel. **Clinical Mycology**, Oxford University Press, 2003.
- 2. Errol Reiss, H Jean Shadomy, G Marshall Lyon III. Fundamental Medical Mycology, Wiley- Blackwell Publications, 2012.
- 3. Michael R. McGinnis, Laboratory Handbook of Medical Mycology, Academic Press, London Ltd. 2012.

Unit I : Text Book 1, Chapter 1, 2.1-140
Unit II : Text Book 1, Chapter 3, 4, 5: 141-364
Unit III : Text Book 1, Chapter 6, 7: 365-424
Unit IV : Text Book 2, Chapter 1: 3-30. Text Book 3, Chapter 3, 4, 5, 6: 73-446
Unit V : Text Book 3, Chapter 3: 73-99

Reference Book(s):

- Jawetz E Melnick J L., Adelberg. Medical Microbiology, McGraw-Hill Companies, Inc. 26th edition, 2010.
- 2. Bailey and Scotts **Diagnostic Microbiology**, Mosby, Inc., an affiliate of Elsevier Inc.13th edition 2014.
- 3. <u>https://paramedicsworld.com/mycology-notes/laboratory-diagnosis-of-fungi/medical-paramedical-studynotes</u>
- 4. https://microbeonline.com

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Manning

	Mapping												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	М	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
CO2	Н	Н	М	Н	Н	Н	М	Н	Н	Η	L	Н	Н
CO3	Н	Н	М	М	Н	Н	М	Н	Н	Н	L	Н	L
CO4	Н	Н	М	Н	Н	Н	М	М	Н	Н	М	Н	L
CO5	Н	Н	М	L	Н	Н	М	Н	Н	Η	М	Н	L

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
Aubi 313/22.	Okue For 2	VILLER	AS
	DT M. TAANGAVEL.	DT CARE Capinayater	3 0 MAR 20

Course Code	Title						
21PGMBE103	Elective Paper I – Group	Elective Paper I – Group C – Fundamentals of Plant Tissue Culture					
Semester : I	Credits : 4	CIA: 50 Marks	ESE : 50 Marks				

Course Objective:

To learn the basics of plant tissue culture for rapid clonal propagation in vitro.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Understand on basic development of plant tissue culture.
CO2	Gain knowledge on the setup of laboratory and sterilization techniques.
CO3	Acquire knowledge on media used for culture techniques and their preparation.
CO4	Understand the different concepts of tissue culture.
CO5	Learn the techniques for production of plants through in vitro condition.

Offered by : Department of Microbiology

Course Content

Instructional Hours / Week : 5

Unit	Description	Text Book	Chapter
I	Introduction to Plant tissue culture: Origin and development, history, scope and applications, culture room and vessels, medium constitution and functions of each element, growth regulators, sterilization techniques; Setting up of primary culture.	1	1
	Instructiona	al Hours	15
п	Laboratory design and sterilization techniques: Washing and storage facilities, Media preparation room, Transfer area, Culture room, Data collection area and specialised facilities and Transplantation area. Sterilization techniques – Dry heat, flame, moist heat, filter, surface sterilization.	2	2
	Instructiona	al Hours	15
	Tissue Culture Media and Preparation: Media composition,	2	3 & 4
ш	Types of media, Media preparation, Selection of new media, sterilizing the culture vessels and media, Aseptic culture technique	1	3
	Instruction	al Hours	15
IV	Concepts of tissue culture: Totipotency, differentiation, dedifferentiation and redifferentiation. Micropropagation; Raising of virus free and pest resistant plants, methods. Somatic embryogenesis: Factors and molecular aspects.	3	5
	Instructiona	al Hours	15
v	Initiation of plant tissue culture: Induction and growth parameters; Culture initiation, Callus culture, Formation, cloning, suspension culture, regeneration. Micropropagation through various explants (Leaf, Stem, Axillary bud, Tuber, Corms and Bulbills).	2	6
	Instructiona		15
	Tota	al Hours	75

Text Book(s):

- 1. Smith, R.H. **Plant Tissue culture techniques and experiments**, Academic Press. 2013.
- 2. Razdan, M.K. **Introduction to plant tissue culture**. Science publishers, inc, USA, 2nd edition. 2002.
- 3. Bhojwani, S.S. and M.K. Razdan. **Plant tissue culture: Theory and Practice**, Elseiver Science, 1st Edition, New York. 1996.

Unit I	:	Text Book 1, Chapter 1: 1-22
Unit II	:	Text Book 2, Chapter 2: 14-21
Unit III	:	Text Book 2, Chapter 3: 22- 34; Chapter 4: 35-42
		Text Book 1, Chapter 3: 31-43
Unit IV	:	Text Book 3, Chapter 5: 125-166
Unit V	:	Text Book 2, Chapter 6:59-70

Reference Book(s):

- 1. Guptha, P.K. Elements of Biotechnology. Rastogi Publications, 2016
- 2. Slater, A., Scott, N. and Fowler, M. Plant Biotechnology: The Genetic Manipulation of Plants, Oxford, 2008.
- 3. <u>https://nptel.ac.in/courses/102/103/102103016/</u>
- 4. <u>https://www.mooc-list.com/tags/biotechnology</u>
- 5. https://www.coursera.org/courses?query=biotechnology

Tools for Assessment (50 Marks)

ſ	CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
	8	8	10	8	8	8	50

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Η	М	Н	Н	Н	М	Η	L	L	L	L	Н
CO2	Н	Η	М	Н	Н	Н	L	Н	L	L	L	L	Н
CO3	М	Η	L	Н	Н	Н	L	Н	Н	L	L	L	Н
CO4	Н	Η	L	Н	Н	L	L	Η	L	L	L	L	Н
CO5	Н	Η	L	L	Н	Н	L	Η	L	М	L	L	Н

H-H igh; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
Listinales 103 2022	E Furne From	1142.	A
DE S. ESATH MATHERE	(tron THAN COND)	I convertible inally	4 3 0 MAR 2022

M. Sc.

Course Code		Title				
21PGMBE201	l	Elective Paper II – Grou	p A			
21 F GIVIDE201	Principles of	Principles of Quality Assurance in Pharmaceuticals				
Semester : II	Credits : 4	CIA: 50 Marks	ESE : 50 Marks			

Course Objective:

To understand and implement quality assurance and quality control measures effectively for the particular operation during drug development in the Pharma Industry.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Understand the strategy of regulation to control microorganisms.					
CO2	Identify things, situations, processes, etc. that may cause harm, particularly to					
02	people.					
CO3	Describe the qualifications, training and experience required.					
CO4	Implement their role within GMP with confidence and knowledge of the principle					
0.04	requirements.					
CO5	Explain the principles of good laboratory practices (GLP) and its importance within					
005	a regulated laboratory environment.					

Offered by: Microbiology Course Content

Instructional Hours / Week : 5

	Content Instructional		1001110
Unit	Description	Text Book	Chapter
I	Microbiological Control Strategy : Overview, Main factors to be controlled, Controlled facilities, Controlled procedures, Controlled product ingredients, Controlled utilities, Controlled equipment's, Controlled formulation.	1	1
	Instruction	al Hours	15
II	Microbial Contamination Risk Assessment in Non-sterile Drug Product Manufacturing and Risk Mitigation: Regulatory, Compendia, and Industry Guidance, Regulatory, Compendia, and Industry Guidance, Putting into Perspective the Microbiological Risk Associated with Non-sterile Products, Risk Assessment Tools, Organizational Risk Management Maturity, Hierarchy of Risks, Effect of Product Attributes, Emerging Manufacturing Technologies. Instruction	1 al Hours	2 15
ш	Qualification of Microbiological Laboratory Personnel and Equipment : Introduction, Reasons, Requirements, and Strategies for Qualification, Critical Aspects of Microbiological Methods, Practical Examples for Qualification of Laboratory Personnel.	1	3
	Instruction	al Hours	15
IV	Good Manufacturing Practices : Concept and philosophy of GMP, Organization and Personal, Premises, Equipment's, Raw Material, Manufacturing Documents, In Process Quality Control (IQPC), Standard Operating Procedure, Packaging and Labelling Control, Good Ware House Practices, Materials and Management, Finished Product Release, Distribution of Records.	2	2
	Instruction	al Hours	15

M. Sc.

V	Good Laboratory Practices : Concept and philosophy of GLP, GLP Guidelines for Manufacturing Unit, GLP Guidelines for Non-Clinical Testing, Quality Audit.	2	3			
	Instructional Hours					
	Tot	al Hours	75			

Text Books:

- 1. DavidRoestiandMarcelGoverde, PharmaceuticalMicrobiologicalQualityAssurance and Control, John Wiley & Sons Inc., 2020.
- 2. Nagori B.P., Ajay Gaur, Renu Solanki and Vipin Mathur. **Pharmaceutical Quality Assurance**, Seventh Edition, 2018.

Unit I : Text Book 1, Chapter 1: 1-18.

Unit II : Text Book 1, Chapter 2: 23-53.

Unit III: Text Book 1, Chapter 3: 57-76.

Unit IV: Text Book 2, Chapter 2: 21-168

Unit V : Text Book 2, Chapter 3: 169-229

Reference Book(s):

- 1. Rosamund M. Baird, Norman A. Hodges, Stephen P. Denver, Handbook of Microbiological Quality Control Pharmaceuticals and Medical Devices, Taylor and Francis, First Edition, 2005.
- 2. Shayne Cox Gad, Pharmaceutical Manufacturing Handbook: Regulations and Quality. John Wiley & Sons Inc., 2008.
- 3. <u>https://www.who.int/medicines/areas/quality_safety/quality_assurance/QualityAss</u> <u>urancePharmVol2.pdf</u>.
- 4. <u>https://www.pharmaguideline.com/p/quality-assurance.html</u>.

Tools for Assessment (50 Marks)

CIA I	CIAII	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Mapping

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Η	Μ	Η	L	Μ	Η	Μ	Η	Н	Н	М	Н	Н
CO2	Η	Н	L	L	Μ	Н	Μ	Н	Н	Н	Н	М	Н
CO3	Η	М	L	М	Η	М	Η	М	Н	М	Н	М	Н
CO4	L	L	L	L	Н	Н	Н	Μ	Н	Н	М	Н	М
CO5	М	L	М	Μ	Μ	L	Μ	Н	Н	Н	Н	Н	Н

H-High; M-Medium; L-Low

Course Designed by	Verified by HOD	Checked by	Approved by
RUST	Menune Posisin	The second	AS
\mathcal{O}	Dem Juger Carre)	Convenor	3 0 MAR 2022

Course Code	Title						
21PGMBE202	-	Elective Paper II – Group B Techniques in Parasitology					
Semester : II	Credits : 4	CIA: 50 Marks	ESE: 50 Marks				

Course Objective:

To enable students to understand the pathogenesis, clinical presentations and complications of parasitic diseases

Course Outcome (CO):

On successful completion of this course the students will be able to

CO1	Provide students with adequate knowledge about endemic parasites, national parasitic problems
CO2	Provide with biological, epidemiological and ecological aspects of parasitesthat causing diseases to human beings.
CO3	Examine and identify the microscopic morphology of parasites and their larvalstages in stained smears.
CO4	Analyze the results obtained from history, clinical examination and investigational data into meaningful diagnostic formulation.
CO5	Recognize sample collection, preservation and examination.

Offered by: Microbiology

Course Content

Instructional Hours/ Week : 5

ourse c	intent instructional file										
Unit	Description	Text Book	Chapter								
I	General Introduction: Protozoa: General features, amoebae, Flagellates, Examination of feces- Microscopy, Wet mount, Thick smear, Permanent stained smear- Iron Haematoxylin stain. Wheatley Trichrome stain. Concentration method, Floatation method, Zinc sulphate Centrifugal Flotation, Sedimentation- Egg count, Fecal culture.	1	2, 3								
	Instructional										
Ш	Symbiosis and parasitism: Commensalism, Phoresis, Parasitism, Mutualism, Parasite-Host interactions- Effect of Parasite on host: Tissue damage, Parenchymatous, Fatty degeneration, Necrosis, TissueIIchanges, Hyperplasia, Neoplasia, Metaplasia.Intestinal nematodes: Ascaris lumbricoides, Enterobius vermicularius, Strongilusstercoralis, Trichuristrichiura.										
	Instructional	Hours	15								
ш	Malarial parasites:Examination of Blood, Examination for malarialParasite.Thin smear, Thick smear, Wright stain, Examination for Microfilarial-wet mount, Concentration method, DEC Provocation method,Laboratory methods for the diagnosis of parasitic Infectionoverview:Intestinal protozoa, Blood and tissue protozoa.Parasiticinfectioninfectionincompromisedhost- <i>Entamoebahistolytica</i> , Crytosporidium sp, Leishmania sp, Toxoplasma gondii.	1	6								
	Instructional	Hours	15								

	Human Hook worm diseases: Necatoramericanus, Ancylostoma		
	duodenale, Ascaris lumbricoi des, Life cycle, Epidemiology, Diagnosis.		
IV	Nematodes-Filarial Nematodes, Wuchereriabancrofti, Bruchiamalayi,	1	18
	Tropical pulmonary		
	Instructional	Hours	15
	Collection Preservation, Shipment of Specimen: Preservation of		
	Specimen: Safety, Fresh specimen Collection times, Processing of		
	Specimen Macroscopic and Microscopic examination of fecal	4	26, 27
V	specimens- ova and parasite identification, Direct wet smear,		
	Concentration sedimentation and Flotation methods, Permanent		
	stained smear.		
	Instructional	Hours	15
	Total	Hours	75

Text Book(s):

- 1. Paniker CJK, **Text Book of Medical Parasitology**, 7thedition, Jaypee brothers Medical publishers (p) Ltd, New Delhi, 2013.
- 2. Burton.J.Bogitsh, Clint Carter.E, Thomas Oeltmann.N, **Human Parasitology**, 4thedition,Elsevier,AcademicPress.UK, 2013.
- 3. Braily&Scott, Diagnostic Microbiology, 13thedition, Patricia.M TilleElsevier, 2014.
- 4. Lynne Shore Garcia, **Diagnostic Medical parasitology**,5thedition,ASM Press,Washington, 2007.

Unit - I: Textbook 1, Chapter 2,3 & 23: 09-29&229-234

Unit – II: Textbook 2, Chapter 1, 2 & 16: 1-34 & 291-326

Unit - III: Textbook 1, Chapter 6: 63-86

- Unit IV: Textbook 1, Chapter 18: 182-189
- Unit V: Textbook 4, Chapter 26, 27: 759-830

Reference Book(s):

- David Greenwood, Mike Barer, Richard Slack, Will Irving, Medical Microbiology- Guide to Microbial Infection, Pathogenesis, Immunity, lab diagnosis and control, 18th Ed., British library, Elsevier, 2012.
- 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109637/-2/phylum-protozoa/study-notes-on-entamoeba-histolytica

CIAI	IA I CIA III CIA III		Assignment	Seminar	Quiz	Total	
8	8	10	8	8	8	50	

Tools for Assessment (50 Marks)

						I	apping	g					
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Н	Н	Н	Н	Н	Η	Н	Н	Η	М	Н	Н
CO2	М	Н	Η	Η	Η	Η	Η	Η	Н	Η	Н	М	Н
CO3	Η	Н	Η	Η	Η	Η	Η	Η	Н	М	Н	Н	Н
CO4	Η	Н	Η	М	Η	Η	Η	Η	Н	Η	Н	Н	Н
CO5	Н	Н	Н	Н	Η	Η	Η	Н	Н	Н	М	Н	М

Manning

H – High; M- Medium; L – Low

Course Designed by	Verified by HOD	Checked by	Approved by
(DB. S. ESATH NATHECR)	Ellyment 1 30/2/n	and i	A
Do. S. ESMIN PHINECP	(m.m. nonconcon	Convenor	3 D MAR 2

Course Code	Title								
21PGMBE203	-	per II – Group C of Animal Tissue Culture							
Semester : II	Credits: 4	CIA: 50 Marks	ESE: 50 Marks						

Course Objective:

This course aims to provide a comprehensive overview of fundamentals of animal tissue culture in terms of the development, characterization, and applications.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Know and understanding the principles of cell culture techniques.
CO2	Describe the equipment's used in animal cell culture.
CO3	Manage to manipulate with cell cultures.
CO4	Know and understanding the cell culture problems and possibilities.
CO5	Demonstrate knowledge on design and use the cell culture facilities.

Offered by: Microbiology

Course Content

Instructional Hours/ Week : 5

Unit	Description	Text Book	Chapter
I	Introduction of Animal Cell and Tissue Culture: Introduction of Animal Cell and Tissue Culture, History of development of Animal cell culture techniques, Significance and Applications of tissue culture techniques. Instruction	1 nal Hours	1
	Requirements in Animal Cell Culture Laboratory :		
п	Requirements in Animal Cell Culture, Equipments used in Cell culture, Culture vessels, Aseptic techniques, Culture media, designing of culture media, Serum free media development.	1	5, 8-10
	Instruction	nal Hours	15
ш	Primary culture and cell line Development : Primary culture, secondary culture, cell line, cryopreservation, contaminations, organotypic culture, Insect Cell Culture: An Overview, In vitro transformation of animal cells, Types of cell culture.	2	7
	Instruction	nal Hours	15
IV	Characterization of cell line : Characterization, Cell cycle analysis, FBS, Temperature, authentication, species identification, lineage or tissue markers, immunocytochemistry, karyotyping, chromosome banding, molecular identification by isoenzyme.	2	9
	Instruction	nal Hours	15

V	Applications of cell Line: Cell culture in virus isolation, vaccine production, drug/therapeutics development, cancer studies using cell culture, production of hybridoma and monoclonal antibody production, therapeutic cloning, tissue engineering and CRISPR-Cas in gene function studies.	1	27				
	Instruction	nal Hours	15				
Total Hours							

Text Book(s):

- 1. Ian Freshney, R. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, 6th Edition, John Wiley & Sons, Inc., 2010.
- 2. John M. Davis. Animal Cell Culture Essential Methods, John Wiley & Sons, Inc., 2011.

Unit I: Text Book 1, Chapter 1 (1-12) Unit II: Text Book 1, Chapter 5 (55-72), Chapter 8-10 (105-129) Unit III: Text Book 2, Chapter 7 (205-299) Unit IV: Text Book 2, Chapter 9 (255-292) Unit V: Text Book 1, Chapter 27 (467-480)

Reference Book(s):

- 1. Michael Butler. **Animal Cell Culture and Technology**, 2nd edition Bios Scientific Publishers Taylor & Francis Group London and New York, 2004.
- 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325846/

Tools for Assessment (50 Marks)

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Monning

	wiapping												
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	М	L	М	Н	L	Н	L	L	Н	L	Н
CO2	М	Н	L	L	Н	М	L	М	L	L	Н	L	Н
CO3	Н	Н	М	L	М	Н	L	М	L	L	Н	L	Н
CO4	Н	Н	Η	L	Н	Н	L	L	Н	L	Н	Н	Н
CO5	М	Н	Н	Н	Н	L	Н	Н	L	Н	L	Н	Н

H – High; M- Medium; L – Low

Course Designed by	Verified by HOD	Checked by	Approved by
Dristo	Queun 10 30 13 12	the star	AS
((D. M. THANGAND)	Convenar	10 MAD 2

Course Code		Title	
21PGMBE301	Elective Paper III-G	oup A - Total Qualit	y Management
Semester: III	Credits: 4	CIA :50 Marks	ESE:50 Marks

Course Objective:

To provide the student with basic knowledge on total quality management and ISO Registration

Course Outcomes (CO)

On successful completion of this course the students will be able to

CO1	Understand the Need for quality Evolution.
CO2	Familiarize with seven traditional tools of quality.
CO3	Familiarize with Quality Statements, Strategic quality planning.
CO4	Discuss Cost of Quality and Quality Function Deployment.
CO5	Familiarize with Benefits of ISO Registration and Audits.

Offered by: Microbiology

Course Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter
I	Introduction - Need for quality - Evolution of quality - Definitions of quality - Dimensions of product and service quality - Basic concepts of TQM - TQM Framework - Contributions of Deming, Juran and Crosby - Barriers to TQM - Customer focus - orientation, satisfaction, complaints, retention.	1	1,2
	Instructional Hours		15
п	The seven traditional tools of quality – New management tools – Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT – Bench marking – Reason to bench mark, FMEA – Stages, Types.	1	3
	Instructional Hours		15
ш	Leadership - Quality Statements, Strategic quality planning, Quality Councils - Employee involvement - Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal - Continuous process improvement - PDCA cycle, 5S, Kaizen - Supplier partnership - Partnering, Supplier selection, Supplier Rating.	1	16
	Instructional Hours		15
IV	Quality Circles - Cost of Quality - Quality Function Deployment (QFD) - Taguchi quality loss function - TPM - Concepts, improvement needs - Performance measures.	2	14
	Instructional Hours		15
V	Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector-Specific, Standards—AS 9100, TS16949 and TL 9000 ISO 9001 Requirements—Implementation— Documentation—Internal Audits—Registration- Environmental Management System: Introduction—ISO 14000 Series Standards— Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.	2	8
	Instructional Hours		15
	Total Hours		75

Text Book(s):

1. Jens J.Dahlgaard, Kai Kristensen, Gopal K.Kanji: Taylor & Franci, **Fundamentals of TotalQuality Management Process analysis and improvement**, Routledge, London.2005.

2. Dale H. Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, **Total Quality Management**, Pearson Education Asia, Revised 3rd Edition, Indian Reprint, 6th Impression, 2013.

Unit I : Text Book 1, Chapter 1,2: 1-4,4-8 Unit II: Text Book 1, Chapter 3:9-13 Unit III: Text Book 1, Chapter 16: 203-217 Unit IV: Text Book 2, Chapter 14:315-329 Unit V: Text Book 2, Chapter 8: 167-198

Reference Book(s):

1. James R. Evans and William M. Lindsay, **"The Management and Control of Quality"**, 8th Edition, First Indian Edition, Cengage Learning, 2012.

2. Janakiraman. B and Gopal .R.K., "Total Quality Management - Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

3. Suganthi.L and Anand Samuel, **''Total Quality Management''**, Prentice Hall (India) Pvt. Ltd., 2006.

4. <u>GE-6757-TOTAL-QUALITY-MANAGEMENMT-IV-YEAR-VII-SEM-NOTES.pdf</u> (velhightech.com)

5. <u>totalqualitymanagement.pdf (rmkec.ac.in)</u>

Tools for Assessment (5	0 Marks)
--------------------------------	----------

CIA I	CIA II	CIA III	Assignment	Seminar	Quiz	Total
8	8	10	8	8	8	50

Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Н	Η	L	L	Η	Μ	Μ	Μ	L	L	L	L	М
CO2	Μ	Η	Μ	Η	Μ	Н	Μ	Н	L	L	L	L	Μ
CO3	Н	Μ	Н	Μ	Н	Н	Η	Н	L	L	L	L	L
CO4	Н	Μ	Н	Μ	Μ	Μ	Η	Μ	L	L	L	L	L
CO5	Η	Μ	Η	Μ	Η	Η	Μ	Η	L	L	L	Н	Н

H - High; M - Medium; L – Low

Course Designed by	Verified by HOD	Checked by	Approved by
(CRince	Decum 1 20 30 13/2	the star	AS
C	Dr. M. Thenator)	Convener	3 N MAR 20

Course Code		Title		
21PGMBE302	Elective Paper III-Group B - Clinical Data Base Management			
Semester III	Credits: 4	CIA: 50 Marks	ESE:50 Marks	

Course Objective:

Students understand the knowledge about generation of high-quality, reliable, and statistically sound data from clinical trials. This helps to produce a drastic reduction in time from drug development to marketing.

Course Outcome:

CO 1	To understand the infra structure required in performing clinical research					
CO 2	To become familiar with the basic biostatistical and epidemiologic methods.					
CO 3	To understand the practice of collecting, organizing, protecting, and storing an organization's data					
CO 4	To get knowledge on patient care and safety in relation to the use of medicines and paramedical interventions					
CO 5	To analyze and understand the processing principles and guidelines of biomedical research					

Offered by: Microbiology

Course Content

Instructional Hours/ Week: 5

Unit	Description	Text Book	Chapter
	Guidelines: Start with the report, Keep it in the computer, plan. Prescription for successes, Develop the Data Entry		
	Software.	1	2,3
Ι	Design Decisions: Reason for performing, Study objectives, Secondary response, quality control, study population,	1	5,8
	Defense review, rewrite. Documentation: Treatment plan, Data management, monitoring, Quality control. Outcome Measures and Evaluation.		
		15	
Ш	Protocol development : Internal and external reporting; Performance Measures: timesheet, clinical monitor, Clinical Trial Management. Implications of guidelines in the development of trial protocol, Key component, Trail	2	1 1,3
	summary, outcome measures ethics.		15
	Instructional Hours		15
ш	Pharmacovigilance: Hypothesis generating methods, Prescription event monitoring, hypothesis. Legal basic, United states, regulations, Food and drug administration Reporting Standards for Investigational drugs and biological product. Statistical Methods of Evaluating	3	1
	Pharmacovigilance data.		
	Instructional Hours		15

IV	Guidelines of Medical Coding: Introduction to medical coding of Data—MedDRA and other Medical Terminologies -Introduction, Why do we need to code clinical data, problems in coding, Standard medical technology. International Classification of Diseases, MedDRA, Scope and utility, structure, Data entry, Data Retrieval, Strength and weakness. Computer system, objectives, technical criteria, system analysis and testing, CRF Track, Remote data entry.	4	10,12
	Instructional Hours		15
V	Regulatory Affairs: Ethical Issues, Conflict of interest, Selection Of Special Groups As Research, Drug trails, Vaccine trails. Pharmacodynamics: Phase I, II, III. ICMR guidelines for biomedical research, Epidemiological studies.	5	3,4,5
	Instructional Hours		15
	Total Hours		75

Text Book(s):

- 1. A manager's guide to the design and conduct of clinical trials by Phillip I. Good, 2nd Edition, John Wiley & Sons.2006.
- 2. Clinical Trials: A Practical Guide to Design, Analysis, and Reporting by Duolao Wang, Ameet Bakhai, Publisher: Andrew Ward. 2006.
- 3. **Pharmacovigilance** 2nd Edition, Ron Mann, Elizabeth Andrew. John Wiley & Sons Ltd. 2007.
- 4. **Clinical Data Management**, 2nd Edition. Richard K. Rondel, Sheila A. Varley, Colin F. Webb John wiley & Sons Ltd. 2000.
- 5. Ethical guidelines for biomedical research on human participants, Indian council of medical Research. 2006.

Unit: 1: Text book: 1- Chapter:2 pp 1-13 Chapter:3 pp 17-21 Chapter:5 pp 34-36 Chapter:8 pp 84-93 Unit: 2: Text book: 2- Chapter:1 pp 1-11 Chapter:3 pp 23-35. Unit: 3: Text book: 3- Chapter:3 pp 27-34 Chapter:1 pp 1-9 Unit: 4: Text book: 4-Chapter:10 pp 177-204. Chapter:12 pp 229-249. Unit: 5: Text book: 5- Chapter:3 pp 21-33 Chapter: 4 pp 34-40 Chapter: 5 pp 56- 40

Reference Book(s):

- 1. Principles and Practice of Clinical Research By John A Gallin. 2006
- 2. Clinical Data Management By Richard K. Rondel, Sheila A. 2002. Varley, Colin F. Webb
- 3. Understanding Oracle Clinical by Safari Books online

	Tools for Assessment (50 Marks)									
	CIA I	CIA II	CIA III	Seminar	Quiz	Total				
ĺ	8	8	10	8	8	8	50			

Mapping													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	Η	Μ	Μ	Н	Н	Н	Μ	Η	Н	Н	Н	Н	Н
CO2	Η	Н	Μ	L	L	Н	Μ	Η	L	L	L	L	М
CO3	Н	Н	М	L	Н	Н	L	Η	Н	Μ	L	Н	L
CO4	Н	М	Н	Н	Н	Н	Н	Н	L	L	L	Н	Н
CO5	М	Н	М	М	М	Н	Н	Н	L	L	Н	L	L

H – High; M- Medium; L – Low

Course Designed by	Verified by HOD	Checked by	Approved by		
Junk Noato 30/3/22	Otherne for 30/2)m	i Mader	AS		
Dr. K. Frankline News)	Lov. no monumer)	CDC	400 MAR 20		

NASC 2021

Course Code	Title							
21PGMBE303	Elective Paper III – Group C Techniques in Plant and Animal Tissue Culture							
Semester: III	Credits: 4	CIA: 50 Marks	ESE: 50 Marks					

Course Objective:

To learn the technical advancements in the field of animal and plant tissue culture.

Course Outcomes:

On successful completion of this course the students will be able to

onsa	constat completion of this course the statemes will be usic to
CO1	Understanding the basic development of plant and animal tissue culture.
CO2	Gain knowledge about setup of animal and plant tissue culture laboratory and
02	sterilization techniques.
CO3	Acquire knowledge on media preparation and usage for animal and plant tissue culture.
CO4	Understand the different concepts of animal and plant tissue culture.
CO5	Learn the different techniques of animal and plant tissue culture and their applications.

Offered by: Microbiology Course Content

Instructional Hours / Week: 5

Unit	Description	Text Book	Chapter							
I	Cell culture and characterization: Primary Culture- Isolation of Tissue, Steps involved in primary cell culture and Establishment of Cell culture. Cell Lines- Nomenclature, Subculture and Propagation, Immortalization of cell lines. Cell counting, Cell Proliferation, Plating Efficiency, Labeling Index	1	11, 12,15							
	Instructional Hours									
П	Contamination and assay: Source of contamination, Type of microbial contamination, Monitoring, Eradication of Contamination, Cross-Contamination. Cytotoxicity: measurement of cell death; Apoptosis and its determination; Cytotoxicity assays. Cryopreservation & Stem cell culture: Need of Cryopreservation, Preservation, Cell banks, Transporting Cells.	1	18, 19, 21							
	Instructional Hours									
ш	Media : Physicochemical Properties, Balanced Salt Solutions, Complete Media, Serum, Disadvantages of Serum supplemented media, Serum-Free Media, Advantages of Serum-Free media.	1	8,9							
111	Composition of MS media, Gamborgs media, Nitch's media, Whites media and their preparation. Plant growth regulators. Sterilization techniques.	2	1, 2,3							
	Instructional Hours		15							
IV	<i>Invitro</i> culture for plants: Micropropagation, Callus culture, somatic embryogenesis, suspension culture, embryo culture, haploid culture, protoplast culture and fusion; Soma clonal variation; Artificial seeds; Greenhouse conditions, hardening.	2	8,9							
Instructional Hours										
V	Gene Transfer Methods: Agrobacterium mediated gene transfer, Agrobacterium based vectors (Ti plasmids and Ri plasmids), viral									
	Instructional Hours		15							

Total Hours

Text Book(s):

- Ian Freshney. R., Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 6th Edition. 2010.
- 2. Razdan, M. K., Introduction to Plant Tissue Culture, Science Publisher Inc., UK.2003.
- 3. Chawla, H. S., Introduction to Plant Biotechnology, Science Publisher Inc., UK. 2002.

Unit I: Te	ext Book 1, Chapter 11, 12, 15: 65, 78-90, 137
Unit II:	Text Book 1, Chapter 18, 19, 21: 212, 242, 311-327
Unit III:	Text Book 1, Chapter 8, 9:42, 52
	Text Book 2, Chapter 1, 2 & 3: 3-13, 22-35
Unit IV:	Text Book 2, Chapter 8 & 9: 87-199.
TT *. T 7	

Unit V: Text Book 3, Chapter 2: 359-394

Reference Book(s):

- 1. Mantel. S.H, Mathews. J.A. and Mickee, R.A., **An Introduction to Genetic Engineering in Plants**, Black well Scientific Publishers, London, 1985.
- 2. Pierik, R.L.M., *Invitro* Culture of Plants, Martinus Nijhoff Publishers, Dordrecht, 1987.
- Dixon, R.A. and R.A. Gonzales. Plant Cell Culture, A Practical Approach, Oxford University Press, Oxford, 2nd Edition, 1994.
- Jennie P. Mather (Editor), David Barnes (Editor), Animal Cell Culture Methods, Volume 57 (Methods in Cell Biology), Academic Press, 1st Edition, 2001.
- 5. Butler, M., Mammalian Cell Biotechnology: A Practical Approach, Oxford University Press, New York, 2005.
- 6. https://www.elsevier.com/books/animal-biotechnology/verma
- 7. web.nchu.edu.tw/pweb/users/taiwanfir/lesson/1146.pdf

Tools for Assessment (50 Marks)

ſ	CIA I	CIA II	CIA III	CIA III Assignment		Quiz	Total	
	8	8	10	8	8	8	50	

Mapping

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	М	М	L	L	М	Μ	Μ	Η	L	L	Н	L	Н
CO2	Η	Н	L	L	Н	Н	Η	Η	L	L	Η	L	Н
CO3	Н	Н	L	L	Н	Н	Μ	Η	L	L	Η	L	Н
CO4	М	L	L	М	Μ	Н	Μ	Η	L	L	Η	L	Н
CO5	М	Н	Н	L	Н	Н	Η	Η	L	L	Н	L	Н

H - High; M - Medium; L – Low

Course Designed by	Verified by HOD	Checked by	Approved by		
A. Junk No asol 3/22	Objence Julion	and a filler	A		
(Dr. K. Frankline New)	(or normanie)	CDC	30 MAR 2022		

SELF STUDY PAPERS

Course Code	Title
21PMBSS01	Advanced Learners Course – Cellular Organization
Semester: I - IV	Credit: 2

Course Objective:

The course aims at giving the student an overview of cellular organisation with the cellular microenvironment and the signalling events resulting from these interactions, cells response to physiological cues.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Recognize the types of cell and understand the importance of cell in biology.
CO2	Know and be able to discuss the energy and central dogma of cell, be able to give
002	examples of their functions.
CO3	Understand and discuss central cellular signal pathways and cellular adhesion in
005	cells.
CO4	Demonstrate the background of cell with skeleton and their motility.
CO5	Interpret the cell division and their communication of the molecules.

Offered by: Microbiology Course Content

Unit	Description	Text Book	Chapter
I	Introduction to cell biology- Introduction to cells, Evolution, prokaryotic and Eukaryotic cell, chemical and Physical background, micro and macro molecules of cells, Chromatin, chromosomes and nucleus of cell	1 2	1,2,3 1,2
п	Energy, Catalysis and Biosynthesis – use of energy by cells, free energy and catalysis, Activated carriers and biosynthesis, Central Dogma – from Gene to protein, Membrane Structure and function, Cellular Organelles and Membrane Trafficking	1 2	4 3
ш	Signaling mechanisms and Cellular adhesions: general principles of cell signaling, plasma membrane receptors G protein coupled receptors, Enzyme coupled receptors. Hormones and their receptors, bacterial and plant two-component signalling systems, bacterial chemotaxis, and quorum sensing. Extracellular matrix, cellular adhesion, intracellular junction and connective tissues	1 2	7, 8 16
IV	Cytoskeleton and Cellular motility: Cytoskeleton – Intermediate filaments, Microtubles and centrosomes, Actin and actin binding Filaments, intermediate filaments, motor proteins, Intracellular Motility, Cellular Motility and muscle contraction	1 2	9 17
v	Cell division cycle and Cellular communication: overview of cell cycle, cell cycle control system, Phases of cell cycle, Mitosis and cytokinesis Regulation of hematopoiesis, general principles of cell communication, cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, neurotransmission and its regulation	1 2	10 18

NASC 2021

Text Book(s):

1. Thomas D Pollard, Willam C Earnshaw, Jennifer Lippincott Schwartz, Graham T Johnson, **Cell Biology** –. 3rd edition, Elsevier Press, 2017.

2. Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter, 4th Edition, **Essential Cell Biology**, Garland Science, Taylor and Francis group, 2014.

Unit I : Text Book 1 & 2 , Chapter 1-3 & 1-2 Unit II : Text Book 1 & 2, Chapter 4 & 3 Unit III: Text Book 1 & 2, Chapter 7,8,16 Unit IV: Text Book 1 & 2, Chapter 9,17 Unit V: Text Book 1 & 2, Chapter 10,18

Reference Book(s):

1. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. **Molecular Biology of the Cell**. Garland Science, 2015.

2. Gerald C. Karp. Cell and Molecular Biology, Concepts and Experiments. John Wiley and Sons, Inc., 2003.

3. <u>CELLS II_CELLULAR ORGANIZATION</u>

	Time:	3 Hours			Max Marks:100
	Knowle	edge Level	Section	Marks	Description
ĺ	K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define
ĺ	K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed

IOD Checked by	Approved by
" INOT	AS
Ann Dr Convenorina	3 0 MAR 20
	Well'

Course Code	Title
21PMBSS02	Advanced Learners Course – Cell communication and Cell Signalling
Semester: I - IV	Credit: 2

Course Objective:

The course aims at giving the student an overview of cellular interactions with the cellular microenvironment and the signalling events resulting from these interactions, cells response to physiological cues.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Recognize the principle mechanism of pathogen interaction with cell.
CO2	Know and be able to discuss the major groups of intracellular-and membrane- bound receptors, be able to give examples of such receptors.
CO3	Understand and discuss central cellular signal pathways in eukaryotic cells.
CO4	Demonstrate the connection between cellular signal pathways and medical phenomena, using examples.
CO5	Describe the principles of cells involved in immunity.

Offered by: Microbiology Course Content

Unit	Description	Text Book	Chapter
I	Host-parasite interaction: Recognition and entry processes of different pathogens like bacteria, viruses into animal and plant host cells, alteration of host cell behaviour by pathogens, virus-induced cell transformation, pathogen-induced diseases in animals and plants, cell-cell fusion in both normal and abnormal cells	1	8
II	Cell signalling: Hormones and their receptors, cell surface receptor, signalling through G-protein coupled receptors, signal transduction pathways, second messengers, regulation of signalling pathways, bacterial and plant two-component signalling systems, bacterial chemotaxis, and quorum sensing	1	11,12
ш	Cellular communication: Regulation of haematopoiesis, general principles of cell communication, cell adhesion and roles of different adhesion molecules, gap junctions, extracellular matrix, integrins, neurotransmission and its regulation	1	1,2
IV	Cancer: Genetic rearrangements in progenitor cells, oncogenes, tumour suppressor genes, cancer and the cell cycle, virus-induced cancer, metastasis, interaction of cancer cells with normal cells, apoptosis, therapeutic interventions of uncontrolled cell growth	2	4,5
v	Innate and adaptive immune system: Cells and molecules involved in innate and adaptive immunity, antigens, antigenicity, and immunogenicity. B and T cell epitopes, structure and function of antibody molecules, generation of antibody diversity, monoclonal antibodies, antibody engineering, antigen-antibody interactions	1	1

NASC 2021

Text Book(s):

- 1. Donald R. Demuth and Richard Lamont, **Bacterial Cell-to-Cell Communications Role in** Virulence and Pathogenesis. Cambridge University Press, New York, 2006.
- 2. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. **Molecular Biology of the Cell**. Garland Science, 2015.

Unit I: Text Book 1, Chapter 8 Unit II: Text Book 1, Chapter 11 & 12 Unit III: Text Book 1, Chapter 1,2 Unit IV: Text Book 2, Chapter 4,5 Unit V: Text Book 1, Chapter 1

Reference Book(s):

- 1. Gerald C. Karp. Cell and Molecular Biology, Concepts and experiments. John Wiley and Sons, Inc. 2003.
- Lodish, Arnold Berk, Paul Matsudaira, Chris A. Kaiser, Monty Krieger, Matthew P. Scott, Lawrence Zipursky, James Darnell. Molecular Cell Biology, 5th edition. Macmillan Learning, 2003.
- 3. Jeremy M. Berg, John L. Tymocsko, Lubert Stryer. **Biochemistry**, WH Freeman and Company. 5th edition, 2002.
- 4. Karp-Cell-and-Molecular-Biology-Concepts-and-Experiments-7ed-pdf-179-Mb.pdf (colorado.edu)

Time:	3 Hours			Max Marks:100
Knowle	edge Level	Section	Marks	Description
K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define
K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed

Course Designed by	Verified by HOD	Checked by	Approved by
Aubi 3/3/22.	Shune Friday 2	VILLET	A
0. 91	DT M. TAANGAVEL.	CDC	3 0 MAR 2

Course Code	Title
21PMBSS03	Advanced Learners Course – Developmental Biology
Semester: I - IV	Credit: 2

Course Objective:

The course aims at giving the student an overview of presents the basic concepts and facts relating to the developmental biology of animals.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Recognize the basic concepts and development stages of animals in biology.
CO2	Know and discuss the model organisms with their anatomy and genetics.
CO3	Understand and discuss early and late development of cells.
CO4	Demonstrate the concept of stem cells.
CO5	Interpret the application of developmental biology in various fields with updated molecular methods.

Offered by: Microbiology

Course Content

Unit	Description	Text Book	Chapter
I	History & Basic concepts of development: Overview of how the modern era of developmental biology emerged through multidisciplinary approaches, stages of development- zygote, blastula, gastrula, neurula cell fate & commitment – potency- concept of embryonic stem cells, differential gene expression, terminal differentiation, lineages of three germ layers, fate map Mechanisms of differentiation- cytoplasmic determinants, embryonic induction, concept of morphogen, mosaic and regulative development Pattern formation- axis specification, positional identification (regional specification) Morphogenetic movements	1	4,5
п	Model organisms, Anatomy and Genetics: Xenopus, Zebra fish, chick, mouse, <i>Drosphila, C. elegans</i> . Cycle of life – Frog's Life, Evolutionary embryology, Medical embryology and teratology, Evidence for genomic Equivalence, Differential Gene Transcription, DNA methylation and Control of transcription, Differential RNA processing, Control of gene	1 2	1,2,3 3, 6,7,8,9,1 0,11,12
ш	expression at the level of translation Early Development in invertebrate /vertebrate models <i>Drosophila, C. elegans, Xenopus</i> , Mouse/ human Cleavage, gastrulation, Axis specification (Dorsoventral, anterior posterior), & body plan patterning, left right asymmetry in vertebrates, Late Development in invertebrate /vertebrate models. Organogenesis- development of central nervous system in vertebrates, vulval formation in <i>C. elegans</i>	1	4,5,6,7,8
IV	The stem cell concept - Organogenesis: stem cell concept, Mesenchymal stem cells, Emergence of the ectoderm, Neural crest cells and axonal specificity, paraxial and intermediate mesoderm, Lateral plate mesoderm and the endoderm, development of the tetra pod limb, Sex determination, post embryonic development, saga of the germ line	1 2	9-16 20-22

M. Sc. MicrobiologyNASC2021VSystems biology- developmental biology to medicine,
ecology and Evolution: Medical aspects of Developmental11, 3, 5, 9,
10, 11,

77

biology, Developmental Plasticity and Symbiosis,	16, 17
developmental mechanisms of evolutionary change and	
Molecular methods in developmental biology – Animal cap	
1 67 1	
assay, ribonuclease protection analysis, WISH, Microinjection,	
DNA foot printing, Mapping	

Text Book(s):

1. Scott F Gilbert Sinauer Associates, **Developmental Biology**. Publishers Sunderland, Massachusetts USA, 2010.

2. J M W Slack. **Essential Developmental Biology**, Blackwell Publishing Ltd, by John Wiley & Sons, Ltd. 3rd edition, 2013.

Unit I: Text Book 1, Chapter 4,5 Unit II: Text Book 1 & 2, Chapter 1-3 & 3,6-12 Unit III: Text Book 1, Chapter 4-8 Unit IV: Text Book 1&2, Chapter 9-16, 20-22 Unit V: Text Book 1 & 2, Chapter 1,3,5,9-11 & 16, 17 **Reference Book(s):**

1. Matthew Guille, **Molecular Methods in Developmental Biology**, Volume 127, Humana Press Inc., Totowa, NJ, 1999.

2. Scott F Gilbert. **Developmental Biology**, 6th edition, Sunderland (MA): <u>Sinauer</u> <u>Associates</u>; 2000.

3. <u>Developmental Biology Notes - Microbe Notes</u>

Time:	3 Hours			Max Marks:100
Knowle	edge Level	Section	Marks	Description
K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define
K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed

Course Designed by	Verified by HOD	Checked by	Approved by
D. Junk No ato 30/3/22	Objence and 30/2/2	- ANT	A
(Dr. K. Franklins News)	Lor. no monume)	CDC	400 MAR 202

Course Code	Title
21PMBSS04	Advanced Learners Course - Inheritance Biology
Semester: I-IV	Credit: 2

Course Objective:

To make students understand the principles of Genetics and inheritance biology, and to study gene functions for individual characteristics and also may contribute to susceptibility to certain diseases.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Imparts knowledge on the different aspects of genetics and model organisms.
CO2	
CO3	Know the molecular linkage and recombination process.
CO4	Explain the mutations in familial inheritance.
CO5	Describe applications and techniques of modern genetic technology.

Offered by: Microbiology

Course Content

Unit	Description	Text Book	Chapter
I	Introduction to inheritance biology: General introduction to inheritance biology. Historical developments: Model organisms in genetic analyses and experimentation: <i>Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio.</i>	1	2
Ш	Mendel's Laws: Mendel's Laws: Dominance, segregation, independent assortment, deviation from Mendelian inheritance, Rediscovery of Mendel's principles, Chromosome theory of inheritance: Allele, multiple alleles, pseudoallele, complementation tests, Extensions of Mendelian genetics: Allelic interactions, concept of dominance, recessiveness, Incomplete dominance and co-dominance, Multiple alleles, Epistasis, penetrance and expressivity.	1	3
ш	Linkage and recombination of genes: Linkage and recombination of genes, Cytological basis of crossing over, Crossing over at four-strand stage, Molecular mechanism of crossing over, mapping Homologous and non-homologous recombination, including transposition, site-specific recombination.	2	7
IV	Rules of extra nuclear inheritance: Rules of extra nuclear inheritance, Organelle heredity - Chloroplast mutations in Chlamydomonas, mitochondrial, mutations in Saccharomyces, Maternal effects – Shell coiling in Limnaea peregra Infectious heredity - Kappa particles in Paramecium. Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders. Polygenic inheritance, heritability and its measurements, QTL mapping.	1	13

2021

	Structural organization of chromosomes: Structural			1
	organization of chromosomes - centromeres, telomeres and			
X 7	6		11	
v	repetitive DNA, Packaging DNA molecules into chromosomes,	Z	11	
	Concept of euchromatin and heterochromatin, Normal and			
	abnormal karyotypes of human chromosomes, Chromosome			

NASC 2021

banding, Giant chromosomes: Polytene and lamp brush	
chromosomes, Variations in chromosome structure: Deletion,	
duplication, inversion and translocation, Variation in	
chromosomal number and structural abnormalities –Kline felter	
syndrome, Turner syndrome, Down syndrome.	

Text Book(s):

- 1. Snustad DP, Simmons MJ. **Principles of Genetics**.6th edition, John Wiley and Sons Inc., 2011.
- 2. Russell PJ. **Introduction to Genetics** A Molecular Approach. 3rd edition, Benjamin Cummings, 2009.

Unit I: Text Book 1, Chapter 2 Unit II: Text Book 1, Chapter 3 Unit III: Text Book 2, Chapter 7 Unit IV: Text Book 1, Chapter 13 Unit V: Text Book 2, Chapter 11

Reference Book(s):

- 1. Klug WS, Cummings MR, Spencer CA, Palladino M. Concepts of Genetics.10th edition, Benjamin Cummings, 2012.
- 2. Griffith AJF, Wessler SR, Lewontin RC, Carroll SB. **Introduction to Genetic Analysis**. 9th edition, W.H.Freeman and Co., New York, 2007.
- 3. Hartl DL, Jones EW. Genetics: Analysis of Genes and Genomes. 7th edition, Jones and Bartlett Publishers, 2009.
- 4. Gardner EJ, Simmons MJ, Snustad DP. **Principles of Genetics**.8th edition. Wiley-India, 2008.
- 5. <u>PowerPoint Presentation (ddtwo.org).</u>

Time:	3 Hours			Max Marks:100
Knowle	edge Level	Section	Marks	Description
K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define
K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed

Course Designed by	Verified by HOD	Checked by	Approved by
D. Junk Nº and 3/3/22	Otherman and 10/2/2	i toba	A
(Dr. K. Franklins Now)	Lov. noveres)	DT Convenor	4 0 MAR 2022

Course Code	Title	
21PMBSS05	Advanced Learners Course - Evolution and Behaviour	
Semester: I - IV	Credit: 2	

Course Objective:

Students will understand the concepts in Evolution of living organisms and their behavioural patterns according to time.

Course Outcomes:

On successful completion of this course the students will be able to

CO1	Know about the emergence of evolutionary thought and concepts of life.	
CO2	Understand the origin of cells and other living organisms.	
CO3	Analyse the evolution of cell organelles and genetic material.	
CO4	Describe the mechanism of genetic drift over evolution.	
CO5	Explain about the behavioural changes of living organisms.	

Offered by: Microbiology

Course Content

Unit	Description	Text Book	Chapter
I	Emergence of Evolutionary thoughts: Lamarck, Darwin – concepts of variation, adaptation, struggle, fitness and natural selection, Mendelism, Spontaneity of mutations, The evolutionary synthesis.	2	2
п	Origin of cells and unicellular evolution : Origin of basic biological molecules, Abiotic synthesis of organic monomers and polymers, Concept of Oparin and Haldane, Experiment of Miller (1953), Evolution of prokaryotes, Origin of eukaryotic cells, Evolution of unicellular eukaryotes.	3	1
ш	Molecular Evolution: Concepts of neutral evolution, molecular divergence and molecular clocks, Molecular tools in phylogeny, classification and identification, Protein and nucleotide sequence analysis, Origin of new genes and proteins, Gene duplication and divergence.	1	8
IV	The Mechanisms : Population genetics – populations, gene pool, gene frequency, Hardy-Weinberg law, Concepts and rate of change in gene frequency through - Natural selection, Migration, Random genetic drift.	4	9
V	Behavior: Approaches and methods in study of behavior, Proximate and ultimate causation, Neural basis of learning, memory, cognition, sleep and arousal. Development of behavior, Social communication, Social dominance, Use of space and territoriality. Parental care, Aggressive behavior, Habitat selection and optimality in foraging, Migration, orientation and navigation, Domestication and behavioral changes.	1	10

Text Book(s):

- 1. Bateson, P. Behaviour, Development and Evolution, Open Book Publishers. 2017.
- 2. Workman, L. and W. Reader. Evolution and Behaviour. CRC Press. 2016.
- 3. Barton, N.H., D.E.G. Briggs, J.A. Eisen, D.B. Goldstein and N.H. Patel. **Evolution**, Cold Spring Harbour Laboratory Press. 2007.
- 4. Douglas J. Futuyma, **Evolution**, 3rd Edition, Sinaeur Associate Inc., 2013.

Unit I : Text Book 2, Chapter 2 Unit II : Text Book 3, Chapter 1 Unit III: Text Book 1, Chapter 8 Unit IV: Text Book 4, Chapter 9 Unit V: Text Book 1, Chapter 10

Reference Book(s):

- 1. Wise, J. R. Roush and S. Flower. **Concepts of Biology**, Create Space Independent Publishing Platform. 2013.
- 2. Skinner, B.F. Science and Human Behaviour, The Free press. 2014.
- 3. Evolution and behavior (acetheraceonline.com)

Time:	Time:3 Hours Max Marks:100				
Knowle	edge Level	Section	Marks	Description	
K2,K3	1-5	A(Either or Pattern)	5×8=40	Short Answer/Define	
K3/K4	6-15	B(Answer 5 Out of 10)	5×12=60	Descriptive Detailed	

Course Designed by	Verified by HOD	Checked by	Approved by
D. Junk Nº 0050/3/22	Objens and size	in the start	A
(Dr. K. Frankline News)	Lov. nomence)	DT Convenor	4 3 0 MAR 2022